Niemann-Pick type C (NPC) disease is an autosomal recessive disorder caused by mutations of NPC1 and NPC2 genes. Progressive neurodegeneration that accompanies NPC is fatal, but the underlying mechanisms are still poorly understood. In the present study, we characterized the association of autophagiclysosomal dysfunction with cholesterol accumulation in Npc1 ؊/؊ mice during postnatal development. Brain levels of lysosomal cathepsin D were significantly higher in mutant than in wild-type mice. Increases in cathepsin D occurred first in neurons and later in astrocytes and microglia and were both spatially and temporally associated with intracellular cholesterol accumulation and neurodegeneration. Furthermore, levels of ubiquitinated proteins were higher in endosomal/lysosomal fractions of brains from Npc1
Spinal cord injury (SCI) is one of the most debilitating injuries and transplantation of stem cells in a scaffold is a promising strategy for the treatment. However, the stem cell treatment of SCI has been severely impaired by the increased generation of reactive oxygen Video S8. Recording of rat hindlimb motor functions in MnO2 group at Day 14 (MP4) Video S9. Recording of rat hindlimb motor functions in MnO2 group at Day 21 (MP4) Video S10. Recording of rat hindlimb motor functions in MnO2 group at Day 28 (MP4)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.