Background Microvascular invasion (MVI) is important in early recurrence and leads to poor overall survival (OS) in hepatocellular carcinoma (HCC). A number of studies have reported independent risk factors for MVI. In this retrospective study, we designed to develop a preoperative model for predicting the presence of MVI in HCC patients to help surgeons in their surgical decision-making and improve patient management. Patients and Methods We developed a predictive model based on a nomogram in a training cohort of 225 HCC patients. We analyzed patients’ clinical information, laboratory examinations, and imaging features from contrast-enhanced CT. Mann–Whitney U test and multiple logistic regression analysis were used to confirm independent risk factors and develop the predictive model. Internal and external validation was performed on 75 and 77 HCC patients, respectively. Moreover, the diagnostic performance of our model was evaluated using receiver operating characteristic (ROC) curves. Results In the training cohort, maximum tumor diameter (> 50 mm), tumor margin, direct bilirubin (> 2.7 µmol/L), and AFP (> 360.7 ng/mL) were confirmed as independent risk factors for MVI. In the internal and external validation cohort, the developed nomogram model demonstrated good diagnostic ability for MVI with an area under the curve (AUC) of 0.723 and 0.829, respectively. Conclusion Based on routine clinical examinations, which may be helpful for clinical decision-making, we have developed a nomogram model that can successfully assess the risk of MVI in HCC patients preoperatively. When predicting HCC patients with a high risk of MVI, the surgeons may perform an anatomical or wide-margin hepatectomy on the patient.
Background/Aims: The discrepancies between the diagnosis of preoperative endoscopic forceps biopsy (EFB) and endoscopic submucosal dissection (ESD) in patients with early gastric neoplasm (EGN) exist objectively. Among them, pathological upgrading directly influences the accuracy and appropriateness of clinical decisions. The aims of this study were to investigate the risk factors for the discrepancies, with a particular focus on pathological upgrading and to establish a prediction model for estimating the risk of pathological upgrading after EFB. Methods:We retrospectively collected the records of 978 patients who underwent ESD from December 1, 2017 to July 31, 2021 and who had a final histopathology determination of EGN. A nomogram to predict the risk of pathological upgrading was constructed after analyzing subgroup differences among the 901 lesions enrolled. Results:The ratio of pathological upgrading was 510 of 953 (53.5%). Clinical, laboratorial and endoscopic characteristics were analyzed using univariable and binary multivariable logistic regression analyses. A nomogram was constructed by including age, history of chronic atrophic gastritis, symptoms of digestive system, blood high density lipoprotein concentration, macroscopic type, pathological diagnosis of EFB, uneven surface, remarkable redness, and lesion size. The C-statistics were 0.804 (95% confidence interval, 0.774 to 0.834) and 0.748 (95% confidence interval, 0.664 to 0.832) in the training and validation set, respectively. We also built an online webserver based on the proposed nomogram for convenient clinical use. Conclusions:The clinical value of identifying the preoperative diagnosis of EGN lesions is limited when using EFB separately. We have developed a nomogram that can predict the probability of pathological upgrading with good calibration and discrimination value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.