It has been expected that superhydrophobic (SHP) surfaces could have potential anti-icing applications due to their excellent water-repellence properties. However, a thorough understanding on the anti-icing performance of such surfaces has never been reported; even systematic characterizations on icing behavior of various surfaces are still rare because of the lack of powerful instrumentations. In this study, we employed the electrochemical anodic oxidation and chemical etching methods to simplify the fabrication procedures for SHP surfaces on the aluminum alloy substrates, aiming at the anti-icing properties of SHP surfaces of various engineering materials. We found that the one-step chemical etching with FeCl3 and HCl as the etchants was the most effective for ideal SHP surfaces with a large contact angle (CA, 159.1°) and a small contact angle hysteresis (CAH, 4.0°). To systematically investigate the anti-icing behavior of the prepared SHP surfaces, we designed a robust apparatus with a real-time control system based on the two stage refrigerating method. This system can monitor the humidity, pressure, and temperature during the icing process on the surfaces. We demonstrated that the SHP surfaces exhibited excellent anti-icing properties, i.e., from the room temperature of 16.0 °C, the icing time on SHP surfaces can be postponed from 406s to 676s compared to the normal aluminum alloy surface if the surfaces were put horizontally, and the icing temperature can be decreased from -2.2 °C to -6.1 °C. If such surfaces were tilted, the sprayed water droplets on the normal surfaces iced up at the temperature of -3.9 °C, but bounced off the SHP surface even as the temperature reached as low as -8.0 °C. The present study therefore suggests a general, simple, and low-cost methodology for the promising anti-icing applications in various engineering materials and different fields (e.g., power lines and aircrafts).
A flexible composite electrode, which is composed of conducting polyaniline (PANI) as electroactive material and flexible graphite (FG) as conducting substrate, has been fabricated by in situ chemical polymerization to substitute for the expensive Pt counter electrode (CE) used in dye-sensitized solar cells (DSCs). The photovoltaic parameters of DSCs are strongly dependent on the oxidation state and the thickness of the PANI film. Higher photocurrent density and efficiency have been obtained by using emeraldine PANI compared to pernigraniline. The fabrication conditions, such as reaction time and initial monomer concentration, have been investigated to control the thickness of the PANI film. With initial monomer concentration of 0.3 M and reaction time of 60 min, an optimized PANI/FG composite CE with a PANI film thickness of 330 nm has been obtained. A DSC with the composite CE shows an overall conversion efficiency of 7.36%, which is comparable to 7.45% of that with Pt electrode under the same test condition. Facile charge-transfer and low sheet resistance of the composite electrode are suggested to be responsible for high performance of the DSC using such CE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.