The present study was to investigate the anticancer effect of chloroquine on proliferation of mouse colon cancer cell line CT26 in vivo and in vitro and the possible mechanism. We found that chloroquine inhibited CT26 proliferation by concentration- and time-dependent manner. This effect was associated with apoptosis induction and decreased level of phosphorylated p42/44 mitogen-activated protein kinase and phosphorylated Akt. The in vivo study showed chloroquine-reduced tumor volume and prolonged survival time in CT26-bearing mice. These observations indicated chloroquine could inhibit CT26 proliferation by inducing apoptosis both in vitro and in vivo, providing its chemotherapeutic potential of human cancers.
Chloroquine is an antimalarial drug that has been used in the treatment and prophylaxis of malaria since the 1950s. The present study was undertaken to examine the effects of chloroquine on Bcap-37 human breast cancer cells’ growth, cell cycle modulation, apoptosis induction, and associated molecular alterations in vitro. The chloroquine treatment decreased the viability of Bcap-37 cells in a concentration- and time-dependent manner, which correlated with G2/M phase cell cycle arrest. The chloroquine-mediated cell cycle arrest was associated with a decrease in protein levels/activity of polo-like kinase 1 (Plk1), phosphorylated cell division cycle 25C (Cdc25C), phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated Akt. The chloroquine-treated Bcap-37 cells exhibited a marked decrease in the level of mitochondrial transmembrane potential (ΔΨm), which was accompanied by the activation of caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Exposure of Bcap-37 cells to chloroquine also resulted in the induction of spindle abnormalities. In conclusion, the findings in this study suggested that chloroquine might have potential anticancer efficacy, which could be attributed, in part, to its proliferation inhibition and apoptosis induction of cancer cells through modulation of apoptosis and cell cycle-related proteins expressions, down-regulation of mitochondrial transmembrane potential (ΔΨm), and induction of spindle abnormalities.
Currently, there is no reliable biomarker to clinically predict the prognosis of lung adenocarcinoma (ADC). The receptor-tyrosine-kinase like orphan receptor 1 (ROR1) is reported to be overexpressed and associated with poor prognosis in several tumors. This study aimed to examine the expression of ROR1 and evaluate its prognostic significance in human lung ADC patients. In this present study, Western blot analysis and immunohistochemistry were performed to characterize expression of ROR1 protein in lung ADC patients. The results revealed that ROR1 protein expression was significantly higher in lung ADC tissues than that in their adjacent non-tumor tissues. Patients at advanced stages and those with positive lymph node metastasis expressed higher level of ROR1 (P < 0.001). Moreover, Chi-square test showed that ROR1 expression was correlated to gender (P = 0.028), the 7th edition of the American Joint Committee on Cancer tumor-node-metastasis (AJCC TNM) staging system and lymph node metastasis (P < 0.001). Kaplan-Meier survival analysis indicated an association of high ROR1 expression with worse overall survival (OS) in lung ADC patients (P < 0.001). Multivariate COX regression analysis further confirmed that ROR1 is an independent prognostic predictor (P < 0.001, HR = 4.114, 95% CI: 2.513–6.375) for OS. Therefore, ROR1 expression significantly correlates with malignant attributes of lung ADC and it may serve as a novel prognostic marker in lung ADC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.