Gummy stem blight (GSB), caused by Didymella bryoniae (Auersw.) Rehm., is a severe disease affecting Cucurbitaceae crops including melons. The resistance of current melon varieties that carry a single Gsb resistance gene is insufficient to protect against the abundant variation of the D. bryoniae isolates. Pyramiding multiple Gsb resistance genes into melon cultivars is an effective way to develop a broad resistance spectrum and to increase the duration of GSB resistance. In this study, two resistance genes (Gsb-4 and Gsb-6) from two resistant accessions, PI482398 and PI420145, were pyramided into one variety using marker-assisted selection (MAS). The donor parent 4598 that contained Gsb-4 and Gsb-6 was hybridized with muskmelon Baipicui to produce BC<sub>1</sub>F<sub>1</sub> and BC<sub>2</sub>F<sub>1</sub>. Phenotyping and MAS enabled identification and pyramiding of two Gsb genes in individuals of F<sub>1,</sub> BC<sub>1</sub>F<sub>1</sub> and BC<sub>2</sub>F<sub>1</sub>. Field cultivation showed that individuals carrying both Gsb-4 and Gsb-6 had improved resistance to GSB and improved fruit quality. The results indicated that MAS-based pyramiding is an effective strategy for breeding melon cultivars with increased resistance to GSB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.