A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data. The pattern of nucleoside distribution was analyzed in the sampled populations of C. cicadae, O. sinensis and C. militaris, using descriptive statistical analysis, nested analysis and Q cluster analysis. The total amount of the 10 nucleosides in coremium was 1,463.89-5,678.21 µg/g in 10 populations of C. cicadae, 1,369.80-3,941.64 µg/g in sclerotium. The average contents of the 10 analytes were 4,392.37 µg/g and 3,016.06 µg/g in coremium and sclerotium, respectively. The coefficient of variation (CV) of nucleosides ranged from 8.36% to 112.36% in coremium of C. cicadae, and from 10.77% to 155.87% in sclerotium of C. cicadae. The CV of the nucleosides was wide within C. cicadae populations. The nested variation analysis by the nine nucleosides' distribution indicated that about 42.29% of the nucleoside variability in coremium was attributable to the differentiation among populations, and the remaining 57.71% resided in the populations. It OPEN ACCESSMolecules 2014, 19 6124 was also shown that about 28.94% of the variation in sclerotium was expressed between populations, while most of the variation (71.06%) corresponded to the populations.
Clavicipitoid fungi comprise three families, namely Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae. They are found worldwide and are specialized pathogens of invertebrate, plant and fungal hosts. Over the last decade, morphology-and phylogeny-based studies on clavicipitoid fungi have increased. The latter have revealed that Polycephalomyces, Perennicordyceps and Pleurocordyceps consistently cluster together. These genera are currently considered as members of Ophiocordycipitaceae. Nonetheless, information with regard to their diversity and ecology remains sparse. To fill this gap, we collected 29 fresh specimens from insect and fungal substrates from tropical and subtropical evergreen forests in Thailand and southwestern China. We performed detailed morphological analyses and constructed photoplates for all isolated fungi. We used extensive taxon sampling and a dataset comprising internal transcribed spacer gene region (ITS), small subunit ribosomal RNA gene region (SSU), large subunit rRNA gene region (LSU), translation elongation factor 1-alpha gene region (TEF-1α), RNA polymerase II largest subunit gene region (RPB1) and RNA polymerase II second largest subunit (RPB2) to infer order-, family and genus-level phylogenetic trees. Based on these biphasic analyses, we segregate Polycephalomyces, Perennicordyceps, and Pleurocordyceps from Ophiocordycipitaceae and introduce the new family Polycephalomycetaceae to accomodate these three genera. The majority of species in this family have a vast range of insect and fungal hosts. The sexual morph of Polycephalomycetaceae has stromatic ascomata, long stipes, thick peridium, and cylindrical secondary spores. The asexual morph is characterized by colonies on the host surface or synnemata with stipes on the host, one or two types of phialides, and cylindrical to fusiform conidia. We expand the number of taxa in the new family by introducing seven new species (Polycephalomyces albiramus, Perennicordyceps lutea, Pleurocordyceps parvicapitata, Pleurocordyceps lanceolatus, Pleurocordyceps nutansis, Pleurocordyceps heilongtanensis, Pleurocordyceps vitellina), nine new hosts, and one new combination (Perennicordyceps elaphomyceticola). The results herein hint at a high level of diversity for Polycephalomycetaceae. Future investigations focusing on obtaining additional collections and specimens from different geographical areas would help to reveal not only the extent of the group's diversity, but also resolve its deeper phylogenetic placement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.