Background and purposeAlthough inflammation has been proposed to be a candidate risk factor for cerebral small vessel disease (CSVD), previous findings remain largely inconclusive and vary according to disease status and study designs. The present study aimed to investigate possible associations between inflammatory biomarkers and MRI markers of CSVD.MethodsA group of 15 serum inflammatory biomarkers representing a variety of those putatively involved in the inflammatory cascade was grouped and assessed in a cross-sectional study involving 960 stroke-free subjects. The biomarker panel was grouped as follows: systemic inflammation (high-sensitivity C reactive protein (hsCRP), interleukin 6 and tumour necrosis factor α), endothelial-related inflammation (E-selectin, P-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), CD40 ligand, lipoprotein-associated phospholipase A2, chitinase-3-like-1 protein and total homocysteine (tHCY)) and media-related inflammation (matrix metalloproteinases 2, 3 and 9, and osteopontin). The association(s) between different inflammatory groups and white matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMBs), enlarged perivascular space (PVS) and the number of deep medullary veins (DMVs) were investigated.ResultsHigh levels of serum endothelial-related inflammatory biomarkers were associated with both increased WMH volume (R2=0.435, p=0.015) and the presence of lacunes (R2=0.254, p=0.027). Backward stepwise elimination of individual inflammatory biomarkers for endothelial-related biomarkers revealed that VCAM-1 was significant for WMH (β=0.063, p=0.005) and tHCY was significant for lacunes (β=0.069, p<0.001). There was no association between any group of inflammatory biomarkers and CMBs or PVS. Systemic inflammatory biomarkers were associated with fewer DMVs (R2=0.032, p=0.006), and backward stepwise elimination of individual systemic-related inflammatory biomarkers revealed that hsCRP (β=−0.162, p=0.007) was significant.ConclusionWMH and lacunes were associated with endothelial-related inflammatory biomarkers, and fewer DMVs were associated with systemic inflammation, thus suggesting different underlying inflammatory processes and mechanisms.
Abstract. Desmoplastic small round cell tumor (DSRCT) presents as a rare separate clinical pathological entity, and pleural DSRCT is very rare. Following review of the English literatures it was revealed that, to date, <15 cases of primary DSRCT of the pleura have been reported worldwide. Among these, there are few computed tomography (CT) findings of pleural DSRCT which have previously been described in detail. The present study reports a pathologically proven case of pleural DSRCT, with varying contrast CT findings in a 72-year-old female, which appeared as a large (12.0x10.0x6.5 cm), smooth, oval mass in the left lower thorax with slight-moderate uniform enhancement on contrast-enhanced CT. To the best of our knowledge, the present report is the first to describe the large solid-tumor pattern and the patient is the eldest reported case of pleural DSRCT.
Background Current surgical therapies for pelvic organ prolapse (POP) do not repair weak vaginal tissue and just provide support; these therapies may trigger severe complications. Stem cell-based regenerative therapy, due to its ability to reconstruct damaged tissue, may be a promising therapeutic strategy for POP. The objective of this study is to evaluate whether mesenchymal stem cell (MSC) therapy can repair weak vaginal tissue in an ovariectomized rhesus macaque model. Methods A bilateral ovariectomy model was established in rhesus macaques to induce menopause-related vaginal injury. Ten bilaterally ovariectomized rhesus macaques were divided into two groups (n=5/group): the saline group and the MSC group. Three months after ovariectomy, saline or MSCs were injected in situ into the injured vaginal wall. The vaginal tissue was harvested 12 weeks after injection for histological and biochemical analyses to evaluate changes of extracellular matrix, microvascular density, and smooth muscle in the vaginal tissue. Biomechanical properties of the vaginal tissue were assessed by uniaxial tensile testing. Data analysis was performed with unpaired Student’s t test or Mann-Whitney. Results Twelve weeks after MSC transplantation, histological and biochemical analyses revealed that the content of collagen I, elastin, and microvascular density in the lamina propria of the vagina increased significantly in the MSC group compared with the saline group. And the fraction of smooth muscle in the muscularis of vagina increased significantly in the MSC group. In addition, MSC transplantation improved the biomechanical properties of the vagina by enhancing the elastic modulus. Conclusion Vaginal MSC transplantation could repair the weak vaginal tissue by promoting extracellular matrix ingrowth, neovascularization, and smooth muscle formation and improve the biomechanical properties of the vagina, providing a new prospective treatment for POP.
Distinguishing brain venules from arterioles with arteriolosclerosis is less reliable using traditional staining methods. We aimed to immunohistochemically assess the monocarboxylate transporter 1 (MCT1), a specific marker of venous endothelium found in rodent studies, in different caliber vessels in human brains. Both largeand small-caliber cerebral vessels were dissected from four autopsy donors. Immunoreactivity for MCT1 was examined in all autopsied human brain tissues, and then each vessel was identified by neuropathologists using hematoxylin and eosin stain, the Verhoeff’s Van Gieson stain, immunohistochemical stain with antibodies for α-smooth muscle actin and MCT1 in sequence. A total of 61 cerebral vessels, including 29 arteries and 32 veins were assessed. Immunoreactivity for MCT1 was observed in the endothelial cells of various caliber veins as well as the capillaries, whereas that was immunenegative in the endothelium of arteries. The different labeling patterns for MCT1 could aid in distinguishing various caliber veins from arteries, whereas assessment using the vessel shape, the internal elastic lamina, and the pattern of smooth muscle fibers failed to make the distinction between small-caliber veins and sclerotic arterioles. In conclusion, MCT1 immunohistochemical staining is a sensitive and reliable method to distinguish cerebral veins from arteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.