Fifty vegetable oil-based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum-based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oilbased polyols and 50% of petroleum-based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil-based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil-based polyols were inferior to foams made from 100% petroleum-based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum-based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum-based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not.
A screening study was conducted to identify a catalyst that promotes epoxy ring opening of full epoxidized soybean oil (ESBO) avoiding side reactions at low concentration and temperature. Six catalysts different catalyst: formic acid, phosphoric acid, POLYCAT V R 5, p-toluenesulfonic acid monohydrate, POLYCAT V R SA-1, and DABCO V R BL17 were evaluated in terms of acid number, oxirane oxygen content, and color analyses. p-Toluenesulfonic acid shows a particular behavior that promotes the reaction resulting in a maximum oxirane oxygen content reduction; low acid number and color index compare to the others catalyst. To create an alkoxy hydroxy ESBO molecule, ESBO was combined with methanol and ethylene glycol using 0.5% by wt of p-toluenesulfonic acid at 130, 150, and 170 C for different reaction times. Optimal conditions for oxirane ring opening by alcoholysis reaction were determined varying temperatures and reaction times. FTIR spectrum confirmed the emergence of hydroxyl groups in the alkoxy hydroxy ESBO polyol sample. The polyol sample G was characterized in terms of its hydroxyl number and its potential of replacing up from 50-100% of the petroleum-based polyol in waterborne rigid polyurethane foam application. All polyurethanes foams were evaluated to determine their thermal conductivity, density, and compressive strength properties.
Both rigid and flexible water-blown polyurethane foams were made by replacing 0-50% of Voranol 1 490 for rigid foams and Voranol 1 4701 for flexible foams in the B-side of foam formulation by epoxidized soybean oil. For rigid water-blown polyurethane foams, density, compressive strength, and thermal conductivity were measured. Although there were no significant changes in density, compressive strength decreased and thermal conductivity decreased first and then increased with increasing epoxidized soybean oil. For flexible water-blown polyurethane foams, density, 50% compression force deflection, 50% constant force deflection, and resilience of foams were measured. Density decreased first and then increased, no changes in 50% compression force deflection first and then increased, increasing 50% constant force deflection, and decreasing resilience with increase in epoxidized soybean oil. It appears that up to 20% of Voranol 1 490 could be replaced by epoxidized soybean oil in rigid polyurethane foams. When replacing up to 20% of Voranol 1 4701 by epoxidized soybean oil in flexible polyurethane foams, density and 50% compression deflection properties were similar or better than control, but resilience and 50% constant deflection compression properties were inferior.
Water-blown flexible polyurethane foams and molded plastic films were made by replacing 0 to 50% of Voranol V V R 4701 in the B-side of foam and plastic film formulation by epoxidized soybean oil (ESBO). Physical properties of foams including density, 50% compression force deflection (CFD), 50% constant deflection compression (CDC), and resilience were determined. A dynamic mechanical spectrometer (DMS) and a differential scanning calorimeter (DSC) were used to characterize the hard segment (HS) and soft segment (SS) ratio and thermal properties of plastic. Various functional groups in both flexible polyurethane foam and plastic film were characterized using Fourier transform-infrared spectroscopy with attenuated total reflectance (FTIR-ATR). When increasing the ESBO content, both density and 50% CFD of water-blown polyurethane foams decreased first, then increased. On the other hand, the 50% CDC and resilience of foams showed a sharp increase and decrease, respectively. When increasing the ESBO content, the peak of tan d in DMS analysis and Dc p in DSC analysis of plastic films both decreased indicating the hard segment increased and the soft segment decreased in plastic film, respectively. The FTIR-ATR results also show the hydrogen-bonded urethane group increased in plastic films with increasing ESBO content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.