Deep learning-based blind image deblurring plays an essential role in solving image blur since all existing kernels are limited in modeling the real world blur. Thus far, researchers focus on powerful models to handle the deblurring problem and achieve decent results. For this work, in a new aspect, we discover the great opportunity for image enhancement (e.g., deblurring) directly from RAW images and investigate novel neural network structures benefiting RAW-based learning. However, to the best of our knowledge, there is no available RAW image deblurring dataset. Therefore, we built a new dataset containing both RAW images and processed sRGB images and design a new model to utilize the unique characteristics of RAW images. The proposed deblurring model, trained solely from RAW images, achieves the state-of-art performance and outweighs those trained on processed sRGB images. Furthermore, with fine-tuning, the proposed model, trained on our new dataset, can generalize to other sensors. Additionally, by a series of experiments, we demonstrate that existing deblurring models can also be improved by training on the RAW images in our new dataset. Ultimately, we show a new venue for further opportunities based on the devised novel raw-based deblurring method and the brand-new Deblur-RAW dataset.
Thermal governing equationConsidering thermal effects, the steady-state heat conduction governing equation in the x-y coordinate is well-known (Li, Steven and Xie 2001).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.