Two-dimensional (2D) semiconductors with point defects are predicted to host a variety of bound exciton complexes analogous to trions and biexcitons due to strong many-body effects. However, despite the common observation of defect-mediated subgap emission, the existence of such complexes remains elusive. Here, we report the observation of bound exciton (BX) complex manifolds in monolayer MoSe2 with intentionally created monoselenium vacancies (VSe) using proton beam irradiation. The emission intensity of different BX peaks is found to exhibit contrasting dependence on electrostatic doping near the onset of free electron injection. The observed trend is consistent with the model in which free excitons exist in equilibrium with excitons bound to neutral and charged VSe defects, which act as deep acceptors. These complexes are more strongly bound than trions and biexcitons, surviving up to around 180 K, and exhibit moderate valley polarization memory, indicating partial free exciton character.
Precisely controlled impurity doping is of fundamental significance in modern semiconductor technologies. Desired physical properties are often achieved at impurity concentrations well below parts per million level. For emergent two-dimensional semiconductors, development of reliable doping strategies is hindered by the inherent difficulty in identifying and quantifying impurities in such a dilute limit where the absolute number of atoms to be detected is insufficient for common analytical techniques. Here we report rapid high-contrast imaging of dilute single atomic impurities by using conductive atomic force microscopy. We show that the local conductivity is enhanced by more than 100-fold by a single impurity atom due to resonance-assisted tunneling. Unlike the closely related scanning tunneling microscopy, the local conductivity sensitively depends on the impurity energy level, allowing minority defects to be selectively imaged. We further demonstrate subsurface impurity detection with single monolayer depth resolution in multilayer materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.