The urbanization process systematically leads to the loss of biodiversity. Only certain arthropods are resilient to the urbanization process and can thrive in the novel conditions of urbanized landscapes. However, the degree to which arthropod communities survive in urban habitats depends on landscape and local effects and biological interactions (e.g., trophic interactions). In the present study, we examined the relative importance of various factors at landscape (isolation, edge density and area of surrounding greenery) and local (size of park, canopy cover, understory vegetation cover, defoliation depth, weight of dried leaves, soil temperature, soil moisture, and soil pH) spatial scales on the diversity of ants, beetles and spiders in urban parks. Our results indicated that park edge density was negatively correlated with diversity metrics in ants, beetles, and spiders in urban parks relative to the degree of proximity with the peri-urban forest. In other words, parks that located adjacent to the peri-urban forest may not necessarily have high biodiversity. The results suggested that man-made structures have been effective dispersal barriers that limit the spillover effects of ants and spiders but not the spillover of comparatively strong fliers, such as beetles. However, the area of surrounding greenery may have facilitated the colonization of forest-dependent taxa in distant parks. Large parks with reduced edge density supported a higher arthropod diversity because of the minimal edge effect and increased habitat heterogeneity. Vegetation structure consistently explained the variability of ants, beetles, and spiders, indicating that understory plant litter is crucial for providing shelters and hibernation, oviposition, and foraging sites for the major taxa in urban parks. Therefore, efforts should focus on the local management of ground features to maximize the conservation of biological control in urban landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.