RON is a member of the c-MET receptor tyrosine kinase family. Like c-MET, RON is expressed by a variety of epithelial-derived tumors and cancer cell lines and it is thought to play a functional role in tumorigenesis. To date, antagonists of RON activity have not been tested in vivo to validate RON as a potential cancer target. In this report, we used an antibody phage display library to generate IMC-41A10, a human immunoglobulin G1 (IgG1) antibody that binds with high affinity (ED 50 = 0.15 nmol/L) to RON and effectively blocks interaction with its ligand, macrophage-stimulating protein (MSP; IC 50 = 2 nmol/L). We found IMC-41A10 to be a potent inhibitor of receptor and downstream signaling, cell migration, and tumorigenesis. It antagonized MSP-induced phosphorylation of RON, mitogen-activated protein kinase (MAPK), and AKT in several cancer cell lines. In HT-29 colon, NCI-H292 lung, and BXPC-3 pancreatic cancer xenograft tumor models, IMC-41A10 inhibited tumor growth by 50% to 60% as a single agent, and in BXPC-3 xenografts, it led to tumor regressions when combined with Erbitux. Western blot analyses of HT-29 and NCI-H292 xenograft tumors treated with IMC-41A10 revealed a decrease in MAPK phosphorylation compared with control IgG-treated tumors, suggesting that inhibition of MAPK activity may be required for the antitumor activity of IMC-41A10. To our knowledge, this is the first demonstration that a RON antagonist and specifically an inhibitory antibody of RON negatively affects tumorigenesis. Another major contribution of this report is an extensive analysis of RON expression in f100 cancer cell lines and f300 patient tumor samples representing 10 major cancer types. Taken together, our results highlight the potential therapeutic usefulness of RON activity inhibition in human cancers. (Cancer Res 2006; 66(18): 9162-70)
Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that has been associated with several types of cancer. However, its biological significance, as well as its related mechanism in endometrial cancer (EC) still remains elusive. In this study, we examined the function of calcium in EC, with a specific focus on TRPV4 and its downstream pathway. We reported here on the findings that a high level of serum ionized calcium was significantly correlated with advanced EC progression, and among all the calcium channels, TRPV4 played an essential role, with high levels of TRPV4 expression associated with cancer progression both in vitro and in vivo. Proteomic and bioinformatics analysis revealed that TRPV4 was involved in cytoskeleton regulation and Rho protein pathway, which regulated EC cell migration. Mechanistic investigation demonstrated that TRPV4 and calcium influx acted on the cytoskeleton via the RhoA/ROCK1 pathway, ending with LIMK/cofilin activation, which had an impact on F-actin and paxillin (PXN) levels. Overall, our findings indicated that ionized serum calcium level was significantly associated with poor outcomes and calcium channel TRPV4 should be targeted to improve therapeutic and preventive strategies in EC.
A ngiotensinogen (AGT; serpin peptidase inhibitor, clade A, member 8) is a glycoprotein that is the primary substrate of the renin-angiotensin-aldosterone system (RAAS) and is, therefore, one of the most frequently studied proteins because of its contributions to hypertension. Given that AGT is the primary substrate controlling the rate-limiting step of the production of angiotensin peptides, a rise in AGT levels can lead to a parallel increase in the formation of the physiologically active enzyme angiotensin II and may ultimately result in multiple diseases, such as hypertension, cardiovascular disease, and kidney injury. 1-3The AGT gene is expressed in many human tissues, as determined by an analysis of cDNA sequences available on the Unigene website. The AGT gene is known to be highly expressed in the liver, heart, and brain, whereas weakly expressed in the adrenal gland (www.ncbi.nlm.nih.gov/ sites/entrez?db=unigene; Figure S1 in the online-only Data Supplement). The expression of AGT is under developmental and hormonal control in a cell type-specific manner. 4 It is generally approved that AGT expression is predominantly regulated at the transcriptional level. 5 Multiple cis-acting DNA regulatory elements and transcription factors are known to be important in the regulation of AGT. 4,[6][7][8][9] Among those transcription factors, CCAAT/enhancer binding protein (CEBP) has been shown to increase AGT promoter activity through binding to the promoter region 6 and is important for the regulation of AGT in response to interleukin 6 (IL6). 6,10 The CEBP family facilitates the binding of other transcription factors to shared sites and contributes to efficient chromatin remodeling at some of these sites. This feature of CEBP function indicates that it is a pioneering factor for the assembly of transcription factor complexes at these sites. 11Abstract-DNA methylation patterns are maintained in adult somatic cells. Recent findings, however, suggest that all methylation patterns are not preserved. We demonstrate that stimulatory signals can change the DNA methylation status at a CCAAT/enhancer binding protein (CEBP) binding site and a transcription start site and activate expression of the angiotensinogen gene (AGT). A CEBP binding site in the human AGT promoter was hypomethylated in tissues with high expression of AGT, but not in those with low expression. The transcriptional activity of AGT promoter sequences cloned into a reporter plasmid depended on DNA methylation. In cultured human cells, interleukin 6 stimulation caused DNA demethylation around a CEBP binding site and a transcription start site; demethylation was accompanied by increased CEBP-β recruitment and chromatin accessibility of the AGT promoter. DNA methylation activity decreased in the nucleus. Excess circulating aldosterone upregulated AGT expression and was accompanied by DNA hypomethylation around a CEBP binding site and a transcription start site in human visceral adipose tissue. High salt intake led to upregulation of Agt expression, DNA hypometh...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.