LSP induces S phase arrest of the cell cycle and apoptotic death in three CRC cell lines. The results indicate that LSP is a potential novel chemoprevention and treatment agent for colorectal cancer.
Ellagic acid (EA) is able to inhibit the growth of several cancer cells; however, its effect on human ovarian carcinoma cells has not yet been investigated. Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100 μM) and assessed for viability, cell cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax : Bcl-2 ratio and restored anoikis in both cell lines. The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma.
The generality of a peer-mediated exercise program designed to enhance aerobic fitness of 17 children with moderate and severe cognitive disabilities was evaluated. Two systematic replications of the program were conducted. Participants' ages, disability levels, and school settings varied. Target participants were paired with peers without disabilities. These students encouraged their peers to maintain requisite levels of exercise intensity and monitored their heart rates. A between-group multiple-baseline design was used to evaluate program effects. Results replicated earlier findings. Aerobic fitness of participants, measured by exercise heart-rates, improved when the exercise program was introduced. Results for individual participants reflected more variability than combined group data. Implications for overcoming motivational barriers and obtaining valued outcomes correlated with the program are discussed.
The humanized monoclonal antibody-drug conjugate trastuzumab emtansine (T-DM1, Kadcyla) has been approved by the U.S. FDA to treat human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Despite its effectiveness in most patients, some are initially resistant or develop resistance. No biomarker of drug resistance to T-DM1 has been identified. Antibody-drug efficacy is associated with antibody internalization in the cell; therefore, cellular sensitivity of cells to the drug may be linked to cellular vesicle trafficking systems. Caveolin-1 is a 22 KD protein required for caveolae formation and endocytic membrane transport. In this study, the relationship between caveolin-1 expression and the chemosensitivity of HER-2-positive breast cancer cells to T-DM1 was investigated. Samples from 32 human breast cancer biopsy and normal tissue specimens were evaluated immunohistochemically for caveolin-1 expression. Caveolin-1 was shown to be expressed in 68% (22/32) of the breast cancer specimens. In addition, eight (72.7%, 8/11) HER-2 positive breast cancer specimens had a higher caveolin-1 expression than normal tissues. HER-2-positive BT-474 and SKBR-3 breast cancer cells that express low and moderate levels of caveolin-1, respectively, were treated with trastuzumab or its conjugate T-DM1. Cell viability and molecular localizations of caveolin-1, antibody and its conjugate were examined. Confocal microscopy showed that T-DM1 and caveolin-1 colocalized in SKBR-3 cells, which also were five times more sensitive to the conjugate in terms of cell survival than BT-474 cells, although T-DM1 also showed improved drug efficacy in BT-474 cells than trastuzumab treatment. Caveolin-1 expression in these lines was manipulated by transfection of GFP-tagged caveolin-1 or caveolin-1 siRNA. BT-474 cells overexpressing caveolin-1 were more sensitive to T-DM1 treatment than mock-transfected cells, whereas the siRNA-transfected SKBR-3 cells had decreased sensitivity to T-DM1 than mock-transfected SKBR-3 cells. The expression of caveolin-1 could mediate endocytosis and promote the internalization of T-DM1 into HER-2 positive cancer cells. Thus, caveolin-1 protein may be an effective predictor for determining the outcome of T-DM1 treatment in breast cancer patients.
Trastuzumab emtansine (T-DM1) is an antibody drug conjugate (ADC) that was recently approved for the treatment of HER-2-positive metastatic breast cancer. The drug sensitivity of ADCs depends mainly on the internalization efficiency of the drug. Caveolin-1 was shown to promote T-DM1 internalization and enhance drug sensitivity. Whether caveolin-1 can be overexpressed to improve T-DM1 efficacy is interesting and has the potential for clinical application. In this study, diabetes drug metformin was investigated in terms of induction of caveolin-1 expression for increased efficacy of subsequent T-DM1 application. BT-474 cells were pretreated with metformin, followed by combined therapy with metformin and T-DM1. The T-DM1 internalization and drug efficacy were determined, and the protein expressions for signal transduction were also monitored. Caveolin-1 shRNA was applied to suppress endogenous caveolin-1 expression, and the ability of metformin to promote T-DM1 efficacy was investigated. Result showed that in BT-474 cells pretreated with metformin, cellular caveolin-1 overexpression was induced, which then promoted drug efficacy by enhancing T-DM1 internalization. As cellular caveolin-1 was suppressed by shRNA, the effect of metformin-enhanced T-DM1 cytotoxicity was decreased. This study demonstrated that metformin can be applied prior to T-DM1 treatment to improve the clinical efficacy of T-DM1 by enhancing caveolin-1-mediated endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.