Horseshoe crab is an ancient marine arthropod that, in the absence of a vertebrate-like immune system, relies solely on innate immune responses by defense molecules found in hemolymph plasma and granular hemocytes for host defense. A plasma lectin isolated from the hemolymph of Taiwanese Tachypleus tridentatus recognizes bacteria and lipopolysaccharides (LPSs), yet its structure and mechanism of action remain unclear, largely because of limited availability of horseshoe crabs and the lack of a heterogeneous expression system. In this study, we have successfully expressed and purified a soluble and functional recombinant horseshoe crab plasma lectin (rHPL) in an Escherichia coli system. Interestingly, rHPL bound not only to bacteria and LPSs like the native HPL but also to selective medically important pathogens isolated from clinical specimens, such as Gram-negative Pseudomonas aeruginosa and Klebsiella pneumoniae and Gram-positive Streptococcus pneumoniae serotypes. The binding was demonstrated to occur through a specific molecular interaction with rhamnose in pathogen-associated molecular patterns (PAMPs) on the bacterial surface. Additionally, rHPL inhibited the growth of P. aeruginosa PAO1 in a concentration-dependent manner. The results suggest that a specific protein-glycan interaction between rHPL and rhamnosyl residue may further facilitate development of novel diagnostic and therapeutic strategies for microbial pathogens.
To evaluate the molecular interaction of recombinant horseshoe crab plasma lectin (rHPL) with Pseudomonas aeruginosa PAO1, multivalent rhamnobioside derivatives were designed. Eight rhamnoclusters with three or four α(1-3)-rhamnobiosides attached to different central cores, such as methyl gallate, pentaerythritol, and N-Boc Tris, through either an ethylene glycol or a tetraethylene glycol linker, were assembled in two consecutive azide-alkyne cycloaddition click reactions. The synthetic method embraced the preparation of two α(1-3)-rhamnobiosides with different linker arms and their conjugation, in stoichiometric or substoichiometric amounts, to propargyl ether-functionalized tri- or tetravalent scaffolds. A divalent derivative and two self-assembling rhamnobiosides were also prepared. The different architectures and valences of the rhamnoclusters provided an opportunity to evaluate the impact of topology and valency on the binding properties toward rHPL. Inhibitory ELISA data showed that all covalently linked rhamnoclusters could inhibit P. aeruginosa PAO1 recognition activity of rHPL with high efficacy. Trivalent rhamnobiosides showed a stronger inhibitory effect on P. aeruginosa PAO1 binding, and the more flexible clusters on a pentaerythritol or a Tris core were superior to the less flexible methyl gallate-based clusters. Interestingly, the length of the linker arms had a very low impact on the binding ability of the rhamnoclusters. Herein, the two trivalent derivatives on an N-Boc protected Tris central core were the best inhibitors. The self-assembling amphiphilic rhamnobioside derivatives were found to display no multivalent effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.