A pot experiment was performed to study the light-response curve of photosynthesis (PN-PAR curve) of Mangifera indica and the applicability of light-response models under different soil water conditions. The experimental data were fitted and analyzed using the rectangular hyperbola model, the nonrectangular hyperbola model, the exponential model, the modified rectangular hyperbola model, and the kinetic model. The results showed that the optimal range of relative soil water content (RSWC) for the normal photosynthesis of M. indica was 45.1-77.3%. The modified rectangular hyperbola model could well fit the PN-PAR curves and photosynthetic parameters under wide range of soil water conditions (RSWC 23.3-77.3%). The rectangular hyperbola model, the nonrectangular hyperbola model, the exponential model, and the kinetic model could only be used to fit the PN-PAR curves of M. indica under mild and moderate drought stress (RSWC 45.1-77.3%).
In this study, the protective role of exogenous ascorbic acid (AsA) on salt-induced inhibition of photosynthesis in the seedlings of processing tomatoes under salt stress has been investigated. Plants under salt stress (NaCl, 100 mmol/L) were foliar-sprayed with AsA (0.5 mmol/L), lycorine (LYC, 0.25 mmol/L, an inhibitor of key AsA synthesis enzyme l-galactono-γ-lactone dehydrogenase activity), or AsA plus LYC. The effects of AsA on fast OJIP fluorescence rise curve and JIP parameters were then examined. Our results demonstrated that applying exogenous AsA significantly changed the composition of O-J-I-P fluorescence transients in plants subjected to salt stress both with and without LYC. An increase in basal fluorescence (Fo) and a decrease in maximum fluorescence (Fm) were observed. Lower K- and L-bands and higher I-band were detected on the OJIP transient curves compared, respectively, with salt-stressed plants with and without LYC. AsA application also significantly increased the values of normalized total complementary area (Sm), relative variable fluorescence intensity at the I-step (VI), absorbed light energy (ABS/CSm), excitation energy (TRo/CSm), and reduction energy entering the electron transfer chain beyond QA (ETo/CSm) per reaction centre (RC) and electron transport flux per active RC (ETo/RC), while decreasing some others like the approximated initial slope of the fluorescence transient (Mo), relative variable fluorescence intensity at the K-step (VK), average absorption (ABS/RC), trapping (TRo/RC), heat dissipation (DIo/RC) per active RC, and heat dissipation per active RC (DIo/CSm) in the presence or absence of LYC. These results suggested that exogenous AsA counteracted salt-induced photoinhibition mainly by modulating the endogenous AsA level and redox state in the chloroplast to promote chlorophyll synthesis and alleviate the damage of oxidative stress to photosynthetic apparatus. AsA can also raise the efficiency of light utilization as well as excitation energy dissipation within the photosystem II (PSII) antennae, thus increasing the stability of PSII and promoting the movement of electrons among PS1 and PSII in tomato seedling leaves subjected to salt stress.
Recent studies on the seasonal regulation of the oestrous cycle in sheep have focussed mainly on the responses to photoperiod. However, the brain systems that control reproductive activity also respond to nutritional inputs, although the molecular mechanisms involved are not completely understood. One possibility is that small, non-coding RNAs, such as micro-RNAs (miRNAs), have significant influence. In the present study, the amounts and characteristics of miRNAs in hypothalamus from oestrous and anestrous ewes, fed low- or high-nutrient diets, were compared using Illumina HiSeq sequencing technology. In total, 398 miRNAs, including 261 novel miRNAs, were identified in ewes with an enhanced nutritional status (HEN), whereas 384 miRNAs, including 247 novel miRNAs, were identified in the ewes with a lesser nutritional status (HAN). There were eight conserved and 140 novel miRNAs expressed differentially between the two libraries. Based on quantitative real-time polymerase chain reaction, six miRNAs were assessed to verify the accuracy of the library database. Moreover, the correlation between the miRNA target and several upstream and downstream genes in the oestrus-related pathways were also verified in hypothalamus nerve cells. According to the results, nutritional status plays an important role in oestrous regulation in sheep, and the hypothalamic processes and pathways induced by nutritional signals (folic acid and tyrosine) are different from those induced by photoperiodic regulation of oestrus. We have expanded the repertoire of sheep miRNAs that could contribute to the molecular mechanisms that regulate the initiation of oestrous cycles in anestrous ewes in response to the influence of nutritional status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.