This paper first presents the occurrence of Hopf bifurcation and chaos in a practical synchronous reluctance motor drive system. Based on the derived nonlinear system equation, the bifurcation analysis shows that the system loses stability via Hopf bifurcation when the-axis component of its three-phase motor voltages loses its control. Moreover, the corresponding Lyapunov exponent calculation further proves the existence of chaos. Finally, computer simulations and experimental results are used to support the theoretical analysis.
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease, the pathological process of which is complex. Activation of the c-Jun N-terminal kinase (JNK) signaling pathway is associated with the mechanism underlying obesity-induced insulin resistance. Furthermore, the JNK signaling pathway and dysfunctional autophagy serve important roles in hepatic lipid metabolism. However, the exact role of JNK in autophagy and obesity-induced insulin resistance is not fully understood. Therefore, the present study aimed to investigate the underlying mechanisms by which the JNK signaling pathway regulates autophagy and insulin resistance in fatty liver. A rat model of NAFLD was established using a high-fat diet (HFD), and insulin resistance in the livers of HFD rats was determined by peritoneal glucose tolerance testing. The results indicated that a HFD induced impaired glucose tolerance, liver function injury, insulin resistance and increased autophagy in rats. Treatment with SP600125, an inhibitor of JNK, relieved NAFLD in rats. Furthermore, SP600125 decreased the expression levels of autophagy-associated genes, including Beclin-1, microtubule-associated protein 1A/1B light chain 3, autophagy related gene (Atg)3 and Atg5, and the phosphorylation of insulin receptor (IR) β-subunit, IR substrate-1 and protein kinase B in vivo. In conclusion, JNK inhibition may suppress autophagy and attenuate insulin resistance. Therefore, JNK inhibition may provide a novel therapeutic strategy for the treatment of NAFLD.
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases around the world and commonly associated with insulin resistance and hyperlipidemia. Chlorogenic acid (CG) was reported to have insulinsensitizing activity and exert hypocholesterolemic and hypoglycemic effect. However, the involvement of CG in NAFLD remains far from being addressed. In this study, a high-fat diet-induced NAFLD rat model was used to investigate the biological roles and underlying mechanism of CG in NAFLD. The results showed that high-fat diet-fed rats exhibited an increase in body weight, glucose tolerance, liver injury, insulin resistance, as well as autophagy and C-Jun N-terminal kinase (JNK) pathway. Nevertheless, all these effects were alleviated by CG treatment. Moreover, angiotensin treatment in CG group activated the JNK pathway, and promoted autophagy, insulin resistance, and liver injury. In conclusion, our findings demonstrated that CG ameliorated liver injury and insulin resistance by suppressing autophagy via inactivation of JNK pathway in a rat model of NAFLD. Therefore, CG might be a potential application for the treatment of NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.