On 9 July 2009, an Ms6.0 earthquake occurred in mountainous area of Yao’an in Yunnan province of Southern China. Although the magnitude of the earthquake was moderate, it attracted the attention of many Earth scientists because of its threat to the safety of the population and its harm to the local economy. However, the source parameters remain poorly understood due to the sparse distribution of seismic and GNSS (Global Navigation Satellite System) stations in this mountainous region. Therefore, in this study, the two L-band ALOS (Advanced Land Observing Satellite-1) PALSAR (Phased Array type L-band Synthetic Aperture Radar) images from an ascending track is used to investigate the coseismic deformation field, and further determine the location, fault geometry and slip distribution of the earthquake. The results show that the Yao’an earthquake was a strike-slip event with a down-dip slip component. The slip mainly occurred at depths of 3–8 km, with a maximum slip of approximately 70 cm at a depth of 6 km, which is shallower than the reported focal depth of ~10 km. An analysis of the seismic activity and tectonics of the Yao’an area reveals that the 9 July 2009 Yao’an earthquake was the result of regional stress accumulation, which eventually led to the rupture of the northwestern most part of the Maweijing fault.
Evapotranspiration (ET) plays an important role in the hydrological cycle of river basins. Studying ET in the Yellow River Basin (YRB) is greatly significant for the scientific management of water resources. Here, we made full use of the advantages of the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) gravity satellites for monitoring large-scale hydrological changes to calculate the terrestrial water storage anomaly (TWSA) and terrestrial water flux in the YRB from May 2002 to June 2020. Furthermore, combined with terrestrial water flux, precipitation, and runoff data, ET in the YRB was calculated based on the water budget equation and then compared with other traditional ET products. The mutation of annual mean ET was identified by the Mann–Kendall trend test method, and the seasonal and interannual variations of ET were explored. ET was closely related to precipitation. Annual mean ET exhibited a sudden change in 2011, with an insignificant downward trend from 2003 to 2010, followed by an increasing trend from 2011 to 2019, particularly after 2016. Compared with the traditional ET monitoring methods and products, the ET estimated by GRACE/GRACE-FO observations provides a new way to effectively obtain continuous and reliable ET data in a wide range of river basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.