Flexible self-healing thermal management devices are increasingly in demand due to their high flexibility, low driving voltage, and excellent stability of thermal property. In this paper, the design of mechanochromic self-healing thermal management devices is reported based on photonic vitrimer through self-healing dynamic covalent bond. A series of new photonic vitrimers i first prepared by dynamic disulfide covalent bond and PS@SiO 2 photonic crystals. The resulting photonic vitrimer exhibits bright structural colors, large tensile strain (>1000%), high mechanical strength (>10 MPa) and self-healing ability (>95% efficiency). More importantly, the structural color remains constant after 10000 stretching/releasing cycles, demonstrating excellent mechanical stability, creep-resistance, and durability. Taking advantage of the above features, a novel mechanochromic flexible wireless thermal management (MFW) device is developed by semi-embedding the photonic vitrimer in a thermally conductive carbon nanotube film and then integrating it with a Bluetooth module and a control chip. Interestingly, the MFW device exhibits mechanochromic property, fast thermal response, low driving voltage (103 °C, at 3 V), and precise temperature control. Notably, the device even remains electrothermal performance (105 °C) after self-healing. This work provides new insight into the self-healing photonic materials, and the device shows promising applications in wearable electronics, vitro physiotherapy, and personal heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.