Understanding the response patterns and potential mechanisms of structure and function in grassland ecosystems to nitrogen (N) enrichment is essential to evaluate ecological impacts of external N input. The muti-level N manipulative experiment offers the possibility to explore the nonlinear response patterns and associated mechanisms of structure and function in grassland ecosystems to additional N input. In this review, we summarized the impacts of additional N inputs on community diversity, carbon (C) and N cycling in grassland ecosystems around the world. Numerous studies illustrated that N enrichment induced the decline of plant species diversity, plant functional diversity and soil bacteria richness in grassland ecosystems, yet the change of fungal diversity was not significant. Above-and below-ground plant productivity showed different responses to N input: aboveground plant productivity exhibited initial increasing and subsequent saturation trends, but root productivity
AimsGrassland is an important component of the terrestrial ecosystems in China, and plays a vital role in ecosystem productivity and functioning. During the past decades, 90% of natural grasslands have been degraded as a result of climate change and anthropogenic activities. Grassland degradation altered soil nutrient balance, exerting substantial impacts on ecosystem structure and functions. Our objective was to explore the responses of soil and microbial carbon (C), nitrogen (N) and phosphorus (P) stoichiometry to grassland degradation across the Qingzang Plateau alpine grasslands. MethodsWe collected soil samples (0-10 cm) along the degradation sequence (i.e., non-degradation, moderate degradation and heavy degradation) from five sites across the "Three-River Source" region. By determination of soil and microbial C, N and P, we examined the changes in their contents and stoichiometric ratios with grassland degradation. We further synthesized data from the whole Qingzang Plateau alpine grasslands to validate the measured results using a meta-analytical approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.