Coronaviruses
(CoVs) cause numerous diseases, including Middle
East respiratory syndrome and severe acute respiratory syndrome, generating
significant health-related and economic consequences. CoVs encode
the nucleocapsid (N) protein, a major structural protein that plays
multiple roles in the virus replication cycle and forms a ribonucleoprotein
complex with the viral RNA through the N protein’s N-terminal
domain (N-NTD). Using human CoV-OC43 (HCoV-OC43) as a model for CoV,
we present the 3D structure of HCoV-OC43 N-NTD complexed with ribonucleoside
5′-monophosphates to identify a distinct ribonucleotide-binding
pocket. By targeting this pocket, we identified and developed a new
coronavirus N protein inhibitor, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide hydrochloride
(PJ34), using virtual screening; this inhibitor reduced the N protein’s
RNA-binding affinity and hindered viral replication. We also determined
the crystal structure of the N-NTD–PJ34 complex. On the basis
of these findings, we propose guidelines for developing new N protein-based
antiviral agents that target CoVs.
Circular dichroism (CD) spectroscopy is an optical technique that measures the difference in the absorption of left and right circularly polarized light. This technique has been widely employed in the studies of nucleic acids structures and the use of it to monitor conformational polymorphism of DNA has grown tremendously in the past few decades. DNA may undergo conformational changes to B-form, A-form, Z-form, quadruplexes, triplexes and other structures as a result of the binding process to different compounds. Here we review the recent CD spectroscopic studies of the induction of DNA conformational changes by different ligands, which includes metal derivative complex of aureolic family drugs, actinomycin D, neomycin, cisplatin, and polyamine. It is clear that CD spectroscopy is extremely sensitive and relatively inexpensive, as compared with other techniques. These studies show that CD spectroscopy is a powerful technique to monitor DNA conformational changes resulting from drug binding and also shows its potential to be a drug-screening platform in the future.
Human coronavirus OC43 (HCoV-OC43) is a causative agent of the common cold. The nucleocapsid (N) protein, which is a major structural protein of CoVs, binds to the viral RNA genome to form the virion core and results in the formation of the ribonucleoprotein (RNP) complex. We have solved the crystal structure of the N-terminal domain of HCoV-OC43 N protein (N-NTD) (residues 58 to 195) to a resolution of 2.0Å. The HCoV-OC43 N-NTD is a single domain protein composed of a five-stranded β-sheet core and a long extended loop, similar to that observed in the structures of N-NTDs from other coronaviruses. The positively charged loop of the HCoV-OC43 N-NTD contains a structurally well-conserved positively charged residue, R106. To assess the role of R106 in RNA binding, we undertook a series of site-directed mutagenesis experiments and docking simulations to characterize the interaction between R106 and RNA. The results show that R106 plays an important role in the interaction between the N protein and RNA. In addition, we showed that, in cells transfected with plasmids that encoded the mutant (R106A) N protein and infected with virus, the level of the matrix protein gene was decreased by 7-fold compared to cells that were transfected with the wild-type N protein. This finding suggests that R106, by enhancing binding of the N protein to viral RNA plays a critical role in the viral replication. The results also indicate that the strength of N protein/RNA interactions is critical for HCoV-OC43 replication.
One of the key issues affecting the performance of solar cells is the behavior of carrier transfer. In this work, the time-resolved photoluminescence (TRPL) technique was utilized to investigate the electron transfer at the CdS/CdSe, TiO2/CdS, and TiO2/CdSe heterointerfaces. By varying the excitation wavelengths, photoluminescence lifetimes of CdSe and CdS in TiO2/CdSe, TiO2/CdS, TiO2/CdS/CdSe, and TiO2/CdSe/CdS photoelectrodes were measured. The results show that, for the single sensitizer electrodes (TiO2/CdS, TiO2/CdSe), the average PL lifetime of CdS (0.69 ns) is shorter than CdSe (0.99 ns), suggesting that CdS has higher electron transfer rate toward TiO2 compared with CdSe. For the TiO2/CdSe/CdS electrode, the PL lifetime of CdSe exhibits an excitation-wavelength-dependent behavior. A shorter excitation wavelength leads to a longer PL lifetime of CdSe. This additional long lifetime is ascribed to the rapid carrier transfer from the photoexcited carriers in CdS layer into the CdSe layer. On the contrary, the PL lifetime of CdSe is independent of the excitation wavelength in the TiO2/CdS/CdSe electrode, indicating that the excited electrons in the CdS layer did not inject into the CdSe layer. This observation confirms that the charge transfer from the cosensitizers toward the TiO2 is much more efficient in the TiO2/CdS/CdSe electrode rather than in the TiO2/CdSe/CdS electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.