Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.
For electrochemical energy conversion, highly efficient and inexpensive electrocatalysts are required, which are principally designed and synthesized by virtue of structural regulations. Herein, we propose a rational linker scission approach to induce lattice strain in metal–organic framework (MOF) catalysts by partially replacing multicoordinating linkers with nonbridging ligands. Strained NiFe-MOFs with 6% lattice expansion exhibit a superior catalytic performance for the oxygen evolution reaction (OER) under alkaline conditions; the overpotential is reduced to 230 mV (86.6 mV dec–1) from 320 mV (164.9 mV dec–1) for the unstrained NiFe-MOFs at a current density of 10 mA cm–2. Operando studies by using synchrotron radiation X-ray absorption and infrared spectroscopy identified the emergence of a key *OOH intermediate on Ni3+/4+ sites during OER, providing strong evidence that the Ni3+/4+ sites are the active sites and the formation of *OOH is the rate-limiting step. The first-principles calculations were performed to reveal the strain-induced electronic structure changes of the NiFe-MOFs and the Gibbs free energy profile during OER. It is found that the optimized Ni 3d eg-orbital facilitates the formation of *OOH, thus enhancing the OER performance of the strained MOFs.
highly dependent on the adsorption model of oxygen molecules (O 2 ) on the surface of catalysts. [2] The side-on adsorption with a "*O-O*" configuration (* presents the active site) is conducive to weakening the O-O bond for reduction of O 2 into H 2 O via a four-electron (4e) ORR pathway, [3] while the end-on configuration formed by a solo oxygen atom coordinated on a single active site ("*OOH" intermediate) facilitates to selectively catalyzing oxygen to generate H 2 O 2 via a two-electron (2e) ORR pathway. [4] To realize 2e oxygen electroreduction, various strategies including alloying, [5] chemical functionalization, [6] downsizing, [7] and single-atom engineering [8] have been developed to regulate the physicochemical properties of the catalysts. Though substantial progress has been made, the activity and durability of reported works still cannot compete with the demand of the practical application. [9] The cation vacancy engineering strategy could be an effective approach to develop high-performance catalysts for the electrocatalytic synthesis of H 2 O 2 owing to the following merits: creating cation vacancy on host materials can prolong the distance or spacing of the active sites, thereby leading to the formation of *OOH adsorption favorable; [4a] the charge density between active sites and adjacent coordination atoms will be redistributed, which optimizes the Electrocatalytic hydrogen peroxide (H 2 O 2 ) synthesis via the two-electron oxygen reduction reaction (2e ORR) pathway is becoming increasingly important due to the green production process. Here, cationic vacancies on nickel phosphide, as a proof-of-concept to regulate the catalyst's physicochemical properties, are introduced for efficient H 2 O 2 electrosynthesis. The as-fabricated Ni cationic vacancies (V Ni )-enriched Ni 2−x P-V Ni electrocatalyst exhibits remarkable 2e ORR performance with H 2 O 2 molar fraction of >95% and Faradaic efficiencies of >90% in all pH conditions under a wide range of applied potentials. Impressively, the as-created V Ni possesses superb longterm durability for over 50 h, suppassing all the recently reported catalysts for H 2 O 2 electrosynthesis. Operando X-ray absorption near-edge spectroscopy (XANES) and synchrotron Fourier transform infrared (SR-FTIR) combining theoretical calculations reveal that the excellent catalytic performance originates from the V Ni -induced geometric and electronic structural optimization, thus promoting oxygen adsorption to the 2e ORR favored "end-on" configuration. It is believed that the demonstrated cation vacancy engineering is an effective strategy toward creating active heterogeneous catalysts with atomic precision.
The two-dimensional surface or one-dimensional interface of heterogeneous catalysts is essential to determine the adsorption strengths and configurations of the reaction intermediates for desired activities. Recently, the development of single-atom catalysts has enabled an atomic-level understanding of catalytic processes. However, it remains obscure whether the conventional concept and mechanism of one-dimensional interface are applicable to zero-dimensional single atoms. In this work, we arranged the locations of single atoms to explore their interfacial interactions for improved oxygen evolution. When iridium single atoms were confined into the lattice of CoOOH, efficient electron transfer between Ir and Co tuned the adsorption strength of oxygenated intermediates. In contrast, atomic iridium species anchored on the surface of CoOOH induced inappreciable modification in electronic structures, whereas steric interactions with key intermediates at its Ir−OH−Co interface played a primary role in reducing its energy barrier toward oxygen evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.