It has recently been reported that Parkinson's disease (PD) is preceded and accompanied by daytime sleep attacks, nocturnal insomnia, REM sleep behaviour disorder, hallucinations and depression, symptoms which are frequently as troublesome as the motor symptoms of PD. All these symptoms are present in narcolepsy, which is linked to a selective loss of hypocretin (Hcrt) neurons. In this study, the Hcrt system was examined to determine if Hcrt cells are damaged in PD. The hypothalamus of 11 PD (mean age 79 +/- 4) and 5 normal (mean age 77 +/- 3) brains was examined. Sections were immunostained for Hcrt-1, melanin concentrating hormone (MCH) and alpha synuclein and glial fibrillary acidic protein (GFAP). The substantia nigra of 10 PD brains and 7 normal brains were used for a study of neuromelanin pigmented cell loss. The severity of PD was assessed using the Hoehn and Yahr scale and the level of neuropathology was assessed using the Braak staging criteria. Cell number, distribution and size were determined with stereologic techniques on a one in eight series. We found an increasing loss of hypocretin cells with disease progression. Similarly, there was an increased loss of MCH cells with disease severity. Hcrt and MCH cells were lost throughout the anterior to posterior extent of their hypothalamic distributions. The percentage loss of Hcrt cells was minimal in stage I (23%) and was maximal in stage V (62%). Similarly, the percentage loss of MCH cells was lowest in stage I (12%) and was highest in stage V (74%). There was a significant increase (P = 0.0006, t = 4.25, df = 15) in the size of neuromelanin containing cells in PD patients, but no difference in the size of surviving Hcrt (P = 0.18, t = 1.39, df = 14) and MCH (P = 0.28, t = 1.39, df = 14) cells relative to controls. In summary, we found that PD is characterized by a massive loss of Hcrt neurons. Thus, the loss of Hcrt cells may be a cause of the narcolepsy-like symptoms of PD and may be ameliorated by treatments aimed at reversing the Hcrt deficit. We also saw a substantial loss of hypothalamic MCH neurons. The losses of Hcrt and MCH neurons are significantly correlated with the clinical stage of PD, not disease duration, whereas the loss of neuromelanin cells is significantly correlated only with disease duration. The significant correlations that we found between the loss of Hcrt and MCH neurons and the clinical stage of PD, in contrast to the lack of a relationship of similar strength between loss of neuromelanin containing cells and the clinical symptoms of PD, suggests a previously unappreciated relationship between hypothalamic dysfunction and the time course of the overall clinical picture of PD.
The pontomedullary region is responsible for the reduction of muscle activity in rapid-eye-movement sleep and contributes to the control of muscle tone in waking. This study sought to clarify the nature of the interaction between the pontine and medullary reticular formation in mediating muscle tone suppression. The degree of medullary-induced neck muscle tone suppression in the decerebrate cat was assessed before and after microinjection of lidocaine into the pontine reticular formation. Medullary stimulation-induced suppression of neck muscle tone was blocked after pontine lidocaine microinjection. The maximum blockade was observed at 16.6 minutes on average after the injection, and recovery occurred within 45 minutes. We conclude that descending mechanisms from the medulla are not sufficient for the triggering of muscle tone suppression. A two-way interaction between the medulla and pons is hypothesized to play a crucial role in the control of muscle tone.
Conditioned taste aversion (CTA) learning induces the devaluation of a preferred food through its pairing with a stimulus inducing internal illness. In invertebrates, it is still unclear how this aversive learning impairs the memories of stimuli that had been associated with the appetitive food prior to its devaluation. Here we studied this phenomenon in the honey bee and characterized its neural underpinnings. We first trained bees to associate an odorant (conditioned stimulus, CS) with appetitive fructose solution (unconditioned stimulus, US) using a Pavlovian olfactory conditioning. We then subjected the bees that learned the association to a CTA training during which the antennal taste of fructose solution was contingent or not to the ingestion of quinine solution, which induces malaise a few hours after ingestion. Only the group experiencing contingent fructose stimulation and quinine-based malaise exhibited a decrease in responses to the fructose and a concomitant decrease in odor-specific retention in tests performed 23 h after the original odor conditioning. Furthermore, injection of dopamine-and serotonin-receptor antagonists after CTA learning revealed that this longterm decrease was mediated by serotonergic signaling as its blockade rescued both the responses to fructose and the odor-specific memory 23 h after conditioning. The impairment of a prior CS memory by subsequent CTA conditioning confirms that bees retrieve a devaluated US representation when presented with the CS. Our findings further highlight the importance of serotonergic signaling in aversive learning in the bee and uncover mechanisms underlying aversive memories induced by internal illness in invertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.