Development of the fetal hippocampal formation has been difficult to fully describe because of rapid changes in its shape during the fetal period. The aims of this study were to: (1) segment the fetal hippocampal formation using 7.0 T MR images from 41 specimens with gestational ages ranging from 14 to 22 weeks and (2) reveal the developmental course of the fetal hippocampal formation using volume and shape analyses. Differences in hemispheric volume were observed, with the right hippocampi being larger than the left. Absolute volume changes showed a linear increase, while relative volume changes demonstrated an inverted-U shape trend during this period. Together these exhibited a variable developmental rate among different regions of the fetal brain. Different sub-regional growth of the fetal hippocampal formation was specifically observed using shape analysis. The fetal hippocampal formation possessed a prominent medial–lateral bidirectional shape growth pattern during its rotation process. Our results provide additional insight into 3D hippocampal morphology in the assessment of fetal brain development and can be used as a reference for future hippocampal studies.
Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with diffusion tensor imaging deterministic tractography was modeled as a structural network comprising 90 nodes defined by the automated anatomical labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior.
Attention deficits may present dysfunctions in any one or two components of attention (alerting, orienting, and executive control (EC)). However, these various forms of attention deficits generally have abnormal microstructure integrity of inferior fronto-occipital fasciculus (IFOF). In this work, we aim to deeply explore: (1) associations between microstructure integrities of IFOF (including frontal, parietal, temporal, occipital, and insular segments) and attention by means of structural equation models and multiple regression analyses; (2) genetic/environmental effects on IFOF, attention, and their correlations using bivariate genetic analysis. EC function was attributed to the fractional anisotropy (FA) of left (correlation was driven by genetic and environmental factors) and right IFOF (correlation was driven by environmental factors), especially to left frontal part and right occipital part (correlation was driven by genetic factors). Alerting was associated with FA in parietal and insular parts of left IFOF. No significant correlation was found between orienting and IFOF. This study revealed the advantages of lobar-segmental analysis in structure-function correlation study and provided the anatomical basis for kinds of attention deficits. The common genetic/environmental factors implicated in the certain correlations suggested the common physiological mechanisms for two traits, which should promote the discovery of single-nucleotide polymorphisms affecting IFOF and attention.
Morphological observation and measurements of endocasts have played a vital role in research on the evolution of the human brain. However, endocasts have never been used to investigate how the human brain has evolved since the Neolithic period. We investigated the evolution of the human brain during the Holocene by comparing virtual endocasts from Beiqian site (a Neolithic Chinese site) and a sample of Chinese modern-day humans. Standardized measurements and indices were taken to provide quantification of the overall endocast shape, including the length, breadth, height, frontal breadth, and the ratio of frontal breadth to breadth, as well as the cranial capacity. We found that the height of the endocasts and cranial capacity have decreased between our two samples, whereas the frontal breadth and sexual dimorphism have increased. We argue that these changes can be caused by random genetic mutation and epigenetic change in response to changes in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.