RET fusion occurs in 1.4% of NSCLCs and 1.7% of lung adenocarcinomas and has identifiable clinicopathologic characteristics, warranting further clinical consideration and targeted therapy investigation.
SUMMARY
LKB1 regulates both cell growth and energy metabolism. It remains unclear how LKB1 inactivation coordinates tumor progression with metabolic adaptation in non-small cell lung cancer (NSCLC). Here in KrasG12D;Lkb1lox/lox (KL) mouse model, we reveal differential reactive oxygen species (ROS) levels in lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC). ROS can modulate ADC-to-SCC transdifferentiation (AST). Further, pentose phosphate pathway deregulation and impaired fatty acid oxidation collectively contribute to the redox imbalance and functionally affect AST. Similar tumor and redox heterogeneity also exist in human NSCLC with LKB1 inactivation. In preclinical trials toward metabolic stress, certain KL ADC can develop drug resistance through squamous transdifferentiation. This study uncovers critical redox control of tumor plasticity that may affect therapeutic response in NSCLC.
Therapy resistance is a major problem when treating cancer patients as cancer cells develop mechanisms that counteract the effect of therapeutic compounds, leading to fit and more aggressive clones that contribute to poor prognosis. Therapy resistance can be both intrinsic and/or acquired. These are multifactorial events, and some are related to factors including adaptations in cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), deregulation of key signaling pathways, drug efflux through ABC transporters, acquired mutations, evading apoptosis, and activation of DNA damage response among others. Among these factors, CSCs represent the major source of therapy resistance. CSCs are a subset of tumor cells that are capable of self-renewal and multilineage progenitor expansion that are known to be intrinsically resistant to anticancer treatments. Multiple clones of CSCs pre-exist, and some can adopt and expand easily to changes in the tumor microenvironment (TME) and/or in response to radio- and chemotherapy. A combination of both intrinsic and extrinsic factors contributes to CSC-mediated therapy resistance. In this review, we will focus on CSCs and therapy resistance as well as suggest strategies to eliminate CSCs and, therefore, overcome resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.