We propose a network flow based optimization method for data association needed for multiple object tracking.
The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost flow algorithm in the network. The network is augmented to include an Explicit Occlusion Model(EOM) to track with long-term inter-object occlusions. A solution to the EOM-based network is found by an iterative approach built upon the original algorithm. Initialization and termination of trajectories and potential
We define and study Euclidean and spatial network variants of a new path finding problem: given a set of safe or preferred zones with zero or low cost, find paths that minimize the cost of travel from an origin to a destination. In this problem, the entire space is passable, with preference given to safe or preferred zones. Existing algorithms for problems that involve unsafe regions to be avoided strictly are not effective for this new problem.To solve the Euclidean variant, we devise a transformation of the continuous data space with safe zones into a discrete graph upon which shortest path algorithms apply. A naive transformation yields a large graph that is expensive to search. In contrast, our transformation exploits properties of hyperbolas in Euclidean space to safely eliminate graph edges, thus improving performance without affecting correctness. To solve the spatial network variant, we propose a different graph-to-graph transformation that identifies critical points that serve the same purpose as do the hyperbolas, thus also avoiding the extraneous edges. Having solved the problem for safe zones with zero costs, we extend the transformations to the weighted version of the problem, where travel in preferred zones has non-zero costs. Experiments on both real and synthetic data show that our approaches outperform baseline approaches by more than an order of magnitude in graph construction time, storage space, and query response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.