Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO
Probing the dynamic evolution of catalyst structure and chemical state under operating conditions is highly important for investigating the reaction mechanism of catalysis more in depth, which in turn advances the rational design of redox catalysis in using renewable energy to produce fuels. Herein, the evolution of atomically dispersed Cu species supported by mesoporous TiO2 (mTiO2) during the in situ photocatalytic reduction of CO2 with H2O to valuable solar fuels has been reported. The results unveil that the initial atomically dispersed Cu(II) undergoes reduction to Cu(I) and ultimately to Cu(0); the Cu(I)/Cu(0) mixture is proposed to be more effective for CH4 formation. In addition, the enhanced CO2 adsorption ability benefited from the structural advantage of mTiO2 and the elevated charge carrier transfer synergistically contributes to the CO2 photoreduction. It is anticipated that this work would guide the rational design of Cu-based light-harvesting catalysts for artificial CO2 reduction to value-added feedstocks and inspire further interest in using in situ techniques to study the structure–activity interplay of photocatalysts under operating reaction conditions.
Understanding phase behavior of highly confined water, ice, amorphous ice, and clathrate hydrates (or gas hydrates), not only enriches our view of phase transitions and structures of quasi-two-dimensional (Q2D) solids not seen in the bulk phases but also has important implications for diverse phenomena at the intersection between physical chemistry, cell biology, chemical engineering, and nanoscience. Relevant examples include, among others, boundary lubrication in nanofluidic and lab-on-a-chip devices, synthesis of antifreeze proteins for ice-growth inhibition, rapid cooling of biological suspensions or quenching emulsified water under high pressure, and storage of H2 and CO2 in gas hydrates. Classical molecular simulation (MD) is an indispensable tool to explore states and properties of highly confined water and ice. It also has the advantage of precisely monitoring the time and spatial domains in the sub-picosecond and sub-nanometer scales, which are difficult to control in laboratory experiments, and yet allows relatively long simulation at the 10(2) ns time scale that is impractical with ab initio molecular dynamics simulations. In this Account, we present an overview of our MD simulation studies of the structures and phase behaviors of highly confined water, ice, amorphous ice, and clathrate, in slit graphene nanopores. We survey six crystalline phases of monolayer (ML) ice revealed from MD simulations, including one low-density, one mid-density, and four high-density ML ices. We show additional supporting evidence on the structural stabilities of the four high-density ML ices in the vacuum (without the graphene confinement), for the first time, through quantum density-functional theory optimization of their free-standing structures at zero temperature. In addition, we summarize various low-density, high-density, and very-high-density Q2D bilayer (BL) ice and amorphous ice structures revealed from MD simulations. These simulations reinforce the notion that the nanoscale confinement not only can disrupt the hydrogen bonding network in bulk water but also can allow satisfaction of the ice rule for low-density and high-density Q2D crystalline structures. Highly confined water can serve as a generic model system for understanding a variety of Q2D materials science phenomena, for example, liquid-solid, solid-solid, solid-amorphous, and amorphous-amorphous transitions in real time, as well as the Ostwald staging during these transitions. Our simulations also bring new molecular insights into the formation of gas hydrate from a gas and water mixture at low temperature.
Two new phases of water, the mid-density hexagonal monolayer ice and the high-density flat rhombic monolayer ice, are observed in our molecular dynamics simulations of monolayer water confined between two smooth hydrophobic walls. These are in addition to the two monolayer ices reported previously, namely, the low-density 4$8 2 monolayer ice and the high-density puckered rhombic monolayer ice (HD-pRMI). Stabilities of the structures are confirmed by ab initio computation.Importantly, both new phases and the HD-pRMI are predicted to be ferroelectric. An in-plane external electric field can further stabilize these ferroelectric monolayer ices. † Electronic supplementary information (ESI) available: The MD simulation of water conned between two single graphene sheets and two-phase coexistence, the DFT computational details, the snapshot of the all-atom planer structure, the r-P L curves for various D under electric elds, and the dynamic trajectories of the phase transitions from LD-48MI to MD-HMI, from MD-HMI to HD-fRMI, and from MD-HMI to HD-pRMI. See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.