Numerical simulations of active galactic nuclei (AGN) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation and stellar feedback, focusing on the interplay between cooling, AGN heating and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the ICM and reduces its cooling rate. Within 1-2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations of cool-core clusters. ICM cooling is dynamically balanced by AGN heating, and a cool-core appearance is preserved. The minimum cooling time to free-fall time ratio typically varies between a few and 20. The star formation rate (SFR) covers a wide range, from 0 to a few hundred M yr −1 , with an average of ∼ 40 M yr −1 . The instantaneous SMBH accretion rate shows large variations on short timescales, but the average value correlates well with the SFR. Simulations without stellar feedback or self-gravity produce qualitatively similar results, but a lower SMBH feedback efficiency (0.1% compared to 1%) results in too many stars.
We provide an analytic framework for interpreting observations of multiphase circumgalactic gas that is heavily informed by recent numerical simulations of thermal instability and precipitation in cool-core galaxy clusters. We start by considering the local conditions required for the formation of multiphase gas via two different modes: (1) uplift of ambient gas by galactic outflows, and (2) condensation in a stratified stationary medium in which thermal balance is explicitly maintained. Analytic exploration of these two modes provides insights into the relationships between the local ratio of the cooling and freefall time scales (i.e., t cool /t ff ), the large-scale gradient of specific entropy, and development of precipitation and multiphase media in circumgalactic gas. We then use these analytic findings to interpret recent simulations of circumgalactic gas in which global thermal balance is maintained. We show that long-lasting configurations of gas with 5 min(t cool /t ff ) 20 and radial entropy profiles similar to observations of local cool-core galaxy cluster cores are a natural outcome of precipitation-regulated feedback. We conclude with some observational predictions that follow from these models. This work focuses primarily on precipitation and AGN feedback in galaxy cluster cores, because that is where the observations of multiphase gas around galaxies are most complete. However, many of the physical principles that govern condensation in those environments apply to circumgalactic gas around galaxies of all masses.
Saliva, like other bodily fluids, has been used to monitor human health and disease. This study tests the hypothesis that informative human mRNA exists in cell-free saliva. If present, salivary mRNA may provide potential biomarkers to identify populations and patients at high risk for oral and systemic diseases. Unstimulated saliva was collected from ten normal subjects. RNA was isolated from the cell-free saliva supernatant and linearly amplified. High-density oligonucleotide microarrays were used to profile salivary mRNA. The results demonstrated that there are thousands of human mRNAs in cell-free saliva. Quantitative PCR (Q-PCR) analysis confirmed the present of mRNA identified by our microarray study. A reference database was generated based on the mRNA profiles in normal saliva. Our finding proposes a novel clinical approach to salivary diagnostics, Salivary Transcriptome Diagnostics (STD), for potential applications in disease diagnostics as well as normal health surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.