Adult stem cell research has been advanced in recent years because of the cells' attractive abilities of selfrenewal and differentiation. Topography of materials is one of the key features that can be harnessed to regulate stem cell behaviors. Stem cells can interact with underlying material through nanosized integrin receptors. Therefore, the manipulation of topographical cues at a nanoscale level can be employed to modulate the cell fate. In this review, we focus our discussion on the different surface topographical cues, especially, with an emphasis on the viral nanoparticle-coated materials, and their effects on stem cell differentiation.
Richtungsweisend: Unterschiedliche Muster resultieren beim Trocknen einer Lösung von Tabakmosaikvirus(TMV)‐Partikeln in einer Glaskapillare (siehe AFM‐Bilder). Die Eigenschaften der hierarchischen Struktur können über die Partikelkonzentration, den Trocknungsprozess und die Beschaffenheit der Röhrchenwand gesteuert werden. Die inwändig gemusterten Röhren wurden genutzt, um glatte Muskelzellen aus der Mausaorta auszurichten.
Simulation for the smooth muscle layer of blood vessel plays a key role in tubular tissue engineering. However, fabrication of biocompatible tube with defined inner nano/micro-structure remains a challenge. Here, we show that a biocompatible polymer tube from poly(l-lactide) (PLLA) and polydimethylsiloxane (PDMS) can be prepared by using electrospinning technique, with assistance of rotating collector and parallel auxiliary electrode. The tube has circumferentially aligned PLLA fibers in the inner surface for cell growth regulation and has a PDMS coating for better compressive property. MTT assay showed the composite PLLA/PDMS tube was suitable for various cells growth. In vitro smooth muscle cells (SMCs) cultured in the tube showed that the aligned PLLA fibers could induce SMCs' orientation, and different expression of α-SMA and OPN genes were observed on the aligned and random PLLA fibers, respectively. The successful fabrication of composite PLLA/PDMS tubular scaffold for regulating smooth muscle cells outgrowth has important implications for tissue-engineered blood vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.