Combining immune checkpoint blockade (ICB) therapy with photodynamic therapy (PDT) holds great potential in treating immunologically “cold” tumors, but photo-generated reactive oxygen species (ROS) can inevitably damage co-administered ICB antibodies, hence hampering the therapeutic outcome. Here we create a ROS-responsive hydrogel to realize the sustained co-delivery of photosensitizers and ICB antibodies. During PDT, the hydrogel skeleton poly(deca-4,6-diynedioic acid) (PDDA) protects ICB antibodies by scavenging the harmful ROS, and at the same time, triggers the gradual degradation of the hydrogel to release the drugs in a controlled manner. More interestingly, we can visualize the ROS-responsive hydrogel degradation by Raman imaging, given the ultrastrong and degradation-correlative Raman signal of PDDA in the cellular silent window. A single administration of the hydrogel not only completely inhibits the long-term postoperative recurrence and metastasis of 4T1-tumor-bearing mice, but also effectively restrains the growth of re-challenged tumors. The PDDA-based ROS-responsive hydrogel herein paves a promising way for the durable synergy of PDT and ICB therapy.
Smartphone technologies can support older adults in their daily lives as they age in place at home. However, they may struggle to use these technologies which impacts acceptance, adoption, and sustainable use. Peer to peer community learning has the potential to support older adults to learn using (smartphone) technologies. This paper studies such a learning community approach and how it can support older adults to learn using and adopt the smartphone application GoLivePhone. This technology assists older adults in their daily living by supporting them through fall detection and activity tracking. In particular, the interface of this application can evolve and adapt as older adults become more knowledgeable during the use process or as their abilities change. This paper shows a field study with seven older adults learning and using the GoLivePhone technology through a living lab approach. These older adults participated in this research in a technology learning community that was set-up for research purposes. For this we used ordinary Samsung A3 smartphones with the simplified GoLivePhone software, particularly designed for older adults. At the end of the learning class we conducted an additional focus group to both explore factors facilitating older adults to learn using this technology and to identify their main personal drivers and motivators to start and adopt this technology. We collected qualitative data via open questions and audio recording during the focus group. This collected data was subject to a thematic analysis, coding was primarily performed by the first author, and reviewed by the other authors. We provide insights into how peer to peer community learning can contribute, and found both super-users and recall tools to be helpful to support sustainable use of smartphone technology to support older adults to age in place.
This research was motivated by a desire to help office workers change their sedentary behavior because a prolonged sedentary posture increases the risks of developing musculoskeletal injuries and chronic diseases, thus threatening their physical and psychological well-being. Regular breaks involving low-effort physical activities are effective in reducing the adverse impacts of inactive behaviors. In this article, we present the design of a posture-based interactive system called HealthSit, which was developed to promote a short lowerback stretching exercise during work breaks. Through a within-subject study involving 30 office workers, the effectiveness of HealthSit in facilitating the stretching exercise was examined by making comparisons between an interaction-aided, a guided, and a self-directed exercise mode. We also used HealthSit as a research probe to investigate the interactivity of the system in enhancing user experience and the psychological benefits of the fitness breaks. Compared with the other two modes, the interaction-aided exercise mode significantly improved the quality of the stretching exercise and enhanced motivation and emotional state. These results confirm the effectiveness of HealthSit in supporting fitness breaks as a new workplace technology. Based on our study, a set of design implications have been derived for technology-assisted fitness work breaks. KEYWORDSWork breaks; lower-back stretch; posture-based interaction; workplace fitness-promoting technology
This paper presents a field study on using peer-based cooperative fitness tracking (PCFT) to promote workplace fitness. The social bonding achieved through a collective fitness goal and the sharing of fitness data between two co-workers has been explored as a motivational factor that can encourage physical activity. The study involved 10 dyads of co-workers in two groups (a distributed vs. a co-located group) based on their proximity at work. The effectiveness of the proposed PCFT was examined by comparing fitness data over a period of three weeks: the baseline week, the PCFT intervention week, and the post-intervention week. The proximity effects on PCFT were investigated by comparing the fitness data, goal commitment, and interview results between the two groups. The quantitative results showed that the physical activity of participants in the co-located group improved significantly after the PCFT intervention. The qualitative results suggested that PCFT may improve the awareness of being physically active, stimulate exchange of knowledge to support active lifestyles and facilitate including fitness breaks in the daily work routine. Based on these findings, we discuss design implications for the future development of the PCFT-based applications and their potential contribution to increased office vitality.
Physical inactivity and chronic stress at work increase the risks of developing metabolic disorders, mental illnesses, and musculoskeletal injuries, threatening office workers’ physical and psychological well-being. Although several guidelines and interventions have been developed to prevent theses subhealth issues, their effectiveness and health benefits are largely limited when they cannot match workday contexts. This paper presents LightSit, a health-promoting system that helps people reduce physically inactive behaviors and manage chronic stress at work. LightSit comprises a sensor mat that can be embedded into an office chair for measuring a user’s sitting posture and heart rate variability and a lighting display that is integrated into a monitor stand to present information unobtrusively, facilitating fitness and relaxation exercises during microbreaks. Following the showroom approach, we evaluated LightSit during a public exhibition at Dutch Design Week 2018. During the eight days of the exhibition, we observed more than 500 sessions of experiences with healthy microbreaks using our prototype. Semistructured interviews were conducted with 50 participants who had office-based jobs and had experienced LightSit. Our qualitative findings indicated the potential benefits of LightSit in facilitating health-promoting behaviors during office work. Based on the insights learned from this study, we discuss the implications for future designs of interactive health-promoting systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.