Mapping multiple QTL is a typical problem of variable selection in an oversaturated model because the potential number of QTL can be substantially larger than the sample size. Currently, model selection is still the most effective approach to mapping multiple QTL, although further research is needed. An alternative approach to analyzing an oversaturated model is the shrinkage estimation in which all candidate variables are included in the model but their estimated effects are forced to shrink toward zero. In contrast to the usual shrinkage estimation where all model effects are shrunk by the same factor, we develop a Bayesian method that allows the shrinkage factor to vary across different effects. The new shrinkage method forces marker intervals that contain no QTL to have estimated effects close to zero whereas intervals containing notable QTL have estimated effects subject to virtually no shrinkage. We demonstrate the method using both simulated and real data for QTL mapping. A simulation experiment with 500 backcross (BC) individuals showed that the method can localize closely linked QTL and QTL with effects as small as 1% of the phenotypic variance of the trait. The method was also used to map QTL responsible for wound healing in a family of a (MRL/MPJ ϫ SJL/J) cross with 633 F 2 mice derived from two inbred lines.
Although nonparametric methods in genome-wide association studies (GWAS) are robust in quantitative trait nucleotide (QTN) detection, the absence of polygenic background control in single-marker association in genome-wide scans results in a high false positive rate. To overcome this issue, we proposed an integrated nonparametric method for multi-locus GWAS. First, a new model transformation was used to whiten the covariance matrix of polygenic matrix K and environmental noise. Using the transferred model, Kruskal–Wallis test along with least angle regression was then used to select all the markers that were potentially associated with the trait. Finally, all the selected markers were placed into multi-locus model, these effects were estimated by empirical Bayes, and all the nonzero effects were further identified by a likelihood ratio test for true QTN detection. This method, named pKWmEB, was validated by a series of Monte Carlo simulation studies. As a result, pKWmEB effectively controlled false positive rate, although a less stringent significance criterion was adopted. More importantly, pKWmEB retained the high power of Kruskal–Wallis test, and provided QTN effect estimates. To further validate pKWmEB, we re-analyzed four flowering time related traits in Arabidopsis thaliana, and detected some previously reported genes that were not identified by the other methods.
Many commercial inbred lines are available in crops. A large amount of genetic variation is preserved among these lines. The genealogical history of the inbred lines is usually well documented. However, quantitative trait loci (QTL) responsible for the genetic variances among the lines are largely unexplored due to lack of statistical methods. In this study, we show that the pedigree information of the lines along with the trait values and marker information can be used to map QTL without the need of further crossing experiments. We develop a Monte Carlo method to estimate locus-specific identity-by-descent (IBD) matrices. These IBD matrices are further incorporated into a mixed-model equation for variance component analysis. QTL variance is estimated and tested at every putative position of the genome. The actual QTL are detected by scanning the entire genome. Applying this new method to a well-documented pedigree of maize (Zea mays L.) that consists of 404 inbred lines, we mapped eight QTL for the maize male flowering trait, growing degree day heat units to pollen shedding (GDUSHD). These detected QTL contributed Ͼ80% of the variance observed among the inbred lines. The QTL were then used to evaluate all the inbred lines using the best linear unbiased prediction (BLUP) technique. Superior lines were selected according to the estimated QTL allelic values, a technique called marker-assisted selection (MAS). The MAS procedure implemented via BLUP may be routinely used by breeders to select superior lines and line combinations for development of new cultivars.
Although epistasis is an important phenomenon in the genetics and evolution of complex traits, epistatic effects are hard to estimate. The main problem is due to the overparameterized epistatic genetic models. An epistatic genetic model should include potential pair-wise interaction effects of all loci. However, the model is saturated quickly as the number of loci increases. Therefore, a variable selection technique is usually considered to exclude those interactions with negligible effects. With such techniques, we may run a high risk of missing some important interaction effects by not fully exploring the extremely large parameter space of models. We develop a penalized maximum likelihood method. The method developed here adopts a penalty that depends on the values of the parameters. The penalized likelihood method allows spurious QTL effects to be shrunk towards zero, while QTL with large effects are estimated with virtually no shrinkage. A simulation study shows that the new method can handle a model with a number of effects 15 times larger than the sample size. Simulation studies also show that results of the penalized likelihood method are comparable to the Bayesian shrinkage analysis, but the computational speed of the penalized method is orders of magnitude faster. Heredity (2005) 95, 96-104.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.