Water sensing is of great importance in wide applications of biomedicine, precision agriculture, chemical industrial processes, and food inspection. As a promising probe to detect water molecules, lanthanide-doped upconversion nanoparticles have drawn rapidly increasing research interest with the merits of the high photostability, fast response, and highly distinguishable spectrum. However, the detection sensitivity of such a technique is usually moderate due to the weak response of the luminescence to variations of water concentrations. Here, we theoretically study a sensitive water sensor based on a single NaGdF4:Yb3+/Tm3+ upconversion microrod. By utilizing whispering-gallery-mode resonance around the cross-section of the microrod, an upconversion laser is generated which can be employed to improve the detection sensitivity by about an order of magnitude compared with the sensors based on upconversion nanoparticle luminescence. The sensor is expected to be used for achieving the high-stability, high-sensitivity, high-spatial-resolution, and real-time detection of water molecules.
Okadaic acid (OA), a marine biotoxin produced by microalgae, poses a significant threat to mariculture, seafood safety, and human health. The establishment of a novel, highly sensitive detection method for OA would have significant practical and scientific implications. Therefore, the purpose of this study was to develop an innovative approach for OA detection. A competitive amplified luminescent proximity homogeneous assay (AlphaLISA) was developed using the principle of specific antigen–antibody binding based on the energy transfer between chemiluminescent microspheres. The method was non-washable, sensitive, and rapid, which could detect 2 × 10−2–200 ng/mL of OA within 15 min, and the detection limit was 4.55 × 10−3 ng/mL. The average intra- and inter-assay coefficients of variation were 2.54% and 6.26%, respectively. Detection of the actual sample results exhibited a good correlation with high-performance liquid chromatography. In conclusion, a simple, rapid, sensitive, and accurate AlphaLISA method was established for detecting OA and is expected to significantly contribute to marine biotoxin research.
Background: A rapid and highly sensitive assay for tumor-associated trypsinogen-2 (TAT-2) based on the time-resolved fluorescence immunoassay (TRFIA) detection technique was developed for the determination of serum TAT-2 levels in cancers. Results: The measurement range of TAT-2-TRFIA was 1.53-300 ng/mL. The within-run and between-run coefficients of variation of TAT-2-TRFIA were 4.38% and 7.82%, respectively. The recovery rate of TAT-2-TRFIA was 103.0%. The cross-reaction rates of trypsin and T-cell immunoglobulin mucin 3 were 0.02% and 0.82%, respectively. The TAT-2-positive rates in lung cancer, liver cancer, nasopharyngeal cancer, cholangiocarcinoma, brain cancer, and pancreatic cancer were 45.9%, 50.0%, 45.0%, 64.3%, 50.0%, and 41.7%, respectively, with the areas under ROC curves of 0.788, 0.734, 0.862, 0.720, 0.887, and 0.585, respectively. In patients with lung cancer, the positive rate of the single indicator CEA was 28.4%, which increased to 60.6% after combined use with TAT-2. In patients with cholangiocarcinoma, the positive rate of CA-199 was 35.7%, which increased to 71.4% after combined use with TAT-2. Conclusions: TAT-2 is expected to be used as an auxiliary diagnostic indicator for the combined use of tumor markers to improve the positive rate and accuracy of detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.