Background, aim, and scope Fertilization is an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shifts of soil microorganisms, which control the cycling of many nutrients in the soil. Here, culture-dependent and cultureindependent approaches were used to analyze the soil bacterial and fungal quantities and community structure under seven fertilization treatments, including Control, Manure, Return (harvested peanut straw was returned to the plot), and chemical fertilizers of NPK, NP, NK, and PK. The objective of this study was to examine the effects on soil microbial composition and diversity of long-term organic and chemical fertilizer regimes in a Chinese upland red soil. Materials and methods Soil samples were collected from a long-term experiment station at Yingtan (28°15′N, 116°55′E), Jiangxi Province of China. The soil samples (0-20 cm) from four individual plots per treatment were collected. The total numbers of culturable bacteria and fungi were determined as colony forming units (CFUs) and selected colonies were identified on agar plates by dilution plate methods. Moreover, soil DNAs were extracted and bacterial 16S rRNA genes and fungal 18S rRNA genes were polymerase chain reaction amplified, and then analyzed by denaturing gradient gel electrophoresis (DGGE), cloning, and sequencing. Results The organic fertilizers, especially manure, induced the least culturable bacterial CFUs, but the highest bacterial diversity ascertained by DGGE banding patterns. Chemical fertilizers, on the other hand, had less effect on the bacterial composition and diversity, with the NK treatment having the lowest CFUs. For the fungal community, the manure treatment had the largest CFUs but much fewer DGGE bands, also with the NK treatment having the lowest CFUs. The conventional identification of representative bacterial and fungal genera showed that long-term fertilization treatments resulted in differences in soil microbial composition and diversity. In particular, 42.4% of the identified bacterial isolates were classified into members of Arthrobacter. For fungi, Aspergillus, Penicillium, and Mucor were the most prevalent three genera, which accounted for 46.6% of the total identified fungi. The long-term fertilization treatments resulted in different bacterial and fungal compositions ascertained by the culture-dependent and also the culture-independent approaches. Discussion It was evident that more representative fungal genera appeared in organic treatments than other treatments, indicating that culturable fungi were more sensitive to organic than to chemical fertilizers. A very notable finding was that fungal CFUs appeared maximal in organic manure treatments. This was quite different from the
In the present study, a sequential extraction procedure, recommended by the Community Bureau of Reference (BCR), was used for the fractionation of the heavy metals Cu, Zn, Pb and Cd in sewage sludge and its residues produced after pyrolysis at different temperatures from 250 to 700 degrees C. The results show that, in the sludge sample, the sum of the percentages of the reducible and oxidizable fractions for all metals except Cu was very high (65.4% for Cd, 85.7% for Pb, 78.7% for Zn), whereas the sum of the percentages of the oxidizable and residual fractions for Cu was very high (88.8%). The same result could be attained in the residues. Statistical analysis shows that at low temperatures the variation in pyrolysis temperature did not effectively contribute to the distribution of metal speciation in the residues. Meanwhile a modified Toxicity Characteristic Leaching Procedure (TCLP) was employed to determine the leachability of these four metals. The result indicates that the TCLP concentration of Cu, Zn, Pb and Cd dropped sharply after the temperature reached 350 degrees C, 550 degrees C, 500 degrees C and 400 degrees C respectively, which means pyrolysis can enhance the stability of these four metals when the temperature is high enough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.