This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision. Index Terms-Discriminant method, hierarchical Dirichlet process mixture model, music annotation and retrieval, music emotion recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.