BackgroundGlycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.Methods & findingsUsing genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04–1.06, per HbA1c-raising allele, p = 3 × 10−29); whereas GS-E was not (OR = 1.00, 95% CI 0.99–1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66–0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38–0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI 0.55–0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.ConclusionsAs G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, ...
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor. Emerging studies showed that long noncoding RNAs (lncRNAs) have crucial regulatory roles in cancer biology. In the current study, differentially expressed lncRNAs between HCC and paired non-tumor tissues were identified using microarrays. The effects of a specific differentially expressed lncRNA (termed ZEB1-AS1) on tumor progression were investigated in vitro and in vivo. We found that ZEB1-AS1 is frequently upregulated in HCC samples, especially in metastatic tumor tissues. DNA methylation analysis shows a tumor-specific ZEB1-AS1 promoter hypomethylation. Aberrant methylation is tightly correlated with overexpression of ZEB1-AS1 in HCC. Patients with ZEB1-AS1 hypomethylation or with high ZEB1-AS1 expression have poor recurrence-free survival. Functionally, ZEB1-AS1 promotes tumor growth and metastasis, acts as an oncogene in HCC. The ZEB1-AS1 gene is located in physical contiguity with ZEB1 and positively regulates the ZEB1 expression. ZEB1 inhibition partially abrogates ZEB1-AS1-induced epithelial to mesenchymal transition (EMT) and cancer metastasis. Our results provide novel insights into the function of lncRNA-driven hepatocarcinogenesis, highlight the important role of ZEB1-AS1 and ZEB1 in HCC progression, and indicate that ZEB1-AS1 may be served as a valuable prognostic biomarker for HCC.
Despite progress in the diagnostics and treatment of hepatocellular carcinoma (HCC), its prognosis remains poor. In this study, we globally assessed long noncoding RNAs (lncRNA) for contributions to HCC using publicly available microarray data, in vitro and in vivo assays. Here, we report that ZFAS1, encoding a lncRNA that is frequently amplified in HCC, is associated with intrahepatic and extrahepatic metastasis and poor prognosis of HCC. ZFAS1 functions as an oncogene in HCC progression by binding miR-150 and abrogating its tumor-suppressive function in this setting. miR-150 repressed HCC cell invasion by inhibiting ZEB1 and the matrix metalloproteinases MMP14 and MMP16. Conversely, ZFAS1 activated ZEB1, MMP14, and MMP16 expression, inhibiting these effects of miR-150. Our results establish a function for ZFAS1 in metastatic progression and suggest its candidacy as a new prognostic biomarker and target for clinical management of HCC. Cancer Res; 75(15); 3181-91. Ó2015 AACR.
Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.