Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Angiogenesis is crucial for tumor formation, development and metastasis in HCC. Previous studies indicated that high expression levels of elongation factor 2 kinase (eEF2K), a protein kinase that negatively regulates the elongation stage of translation, were associated with poor prognosis of HCC. Here, we show that pharmacological inhibition or knockdown of eEF2K in highly metastatic liver cancer cells inhibits their colony forming and migratory capacities, as well as reducing their invasiveness. Importantly, knocking down eEF2K by lentiviral directed shRNA prevented tumor growth and angiogenesis of HCC in mice. Silencing of eEF2K in endothelial cells (HUVECs) led to a reduction in vascularization, evidenced by a decrease in capillary‐like structures in the matrigel. Notably, knocking down eEF2K reduced the expression of angiogenesis‐related growth factors in liver cancer cells and the expression of growth factor receptors on HUVECs, and thus restricted signaling crosstalk that promotes angiogenesis between HCC cells and endothelial cells. We also showed that silencing of eEF2K effectively reduced protein levels of SP1/KLF5 transcription factors and hence decreased the levels of bound SP1/KLF5 to the VEGF promoter, resulted in a decrease in VEGF mRNA expression. Knocking down eEF2K also led to a striking decrease in the phosphorylation of PI3K/Akt and STAT3, indicating inactivation of these tumorigenic pathways. Taken together, our data suggest that eEF2K contributes to angiogenesis and tumor progression in HCC via SP1/KLF5‐mediated VEGF expression, as well as the subsequent stimulation of PI3K/Akt and STAT3 signaling.
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with an aberrant activation of immune cells partly due to the dysfunction of cytokines such as type I interferons (IFNs). Long non-coding RNA MALAT1 has been found to play a pathogenic role in SLE; however, the underlying mechanisms are still poorly understood. Bioinformatics analysis showed the up-regulation of type I IFN downstream effectors OAS2, OAS3, and OASL (OAS-like) in CD4 + T cells, CD19 + B cells, and CD33 + myeloid cells in patients with active SLE compared to healthy participants. In this study, peripheral blood mononuclear cells (PBMCs), CD19 + B, and CD4 + T cells were isolated from active SLE patients and healthy participants. PCR was performed to quantify MALAT1, OAS2, OAS3, and OASL expression in immune cells. MALAT1, OAS2, OAS3, and OASL were knocked down in CD4 + T cells to investigate the regulatory effect of MALAT1 on the effectors and their involvement in type I IFNs-mediated inflammation. Results showed higher OAS2, OAS3, and OASL expression in active SLE patients. MALAT1 expression was positively correlated to OAS2, OAS3, and OASL expression in CD19 + B or CD4 + T cells. MALAT1 knockdown decreased OAS2, OAS3, and OASL expression. Treatment with IFN-a-2a increased the expression of TNF-a, IL-1b, and IFN-a in CD4 + T cells. However, knockdown of MALAT1, OAS2, OAS3, and OASL alone inhibited the effect of IFN-a-2a on TNF-a and IL-1b. This study suggested the involvement of MALAT1 in type I IFNs-mediated SLE by up-regulating OAS2, OAS3, and OASL.
BackgroundAntiphospholipid syndrome (APS) is a systemic autoimmune disease that can lead to thrombosis and/or pregnancy complications. Exosomes, membrane-encapsulated vesicles that are released into the extracellular environment by many types of cells, can carry signals to recipient cells to affect angiogenesis, apoptosis, and inflammation. There is increasing evidence suggesting that exosomes play critical roles in pregnancy. However, the contribution of exosomes to APS is still unknown.MethodsPeripheral plasma was collected from healthy early pregnancy patients (NC-exos) and early pregnancy patients with APS (APS-exos) for exosome extraction and characterization. The effect of exosomes from different sources on pregnancy outcomes was determined by establishing a mouse pregnancy model. Following the coincubation of exosomes and human umbilical vein endothelial cells (HUVECs), functional tests examined the features of APS-exos. The APS-exos and NC-exos were analyzed by quantitative proteomics of whole protein tandem mass tag (TMT) markers to explore the different compositions and identify key proteins. After incubation with HUVECs, functional tests investigated the characteristics of key exosomal proteins. Western blot analysis was used to identify the key pathways.ResultsIn the mouse model, APS-exos caused an APS-like birth outcome. In vitro experiments showed that APS-exos inhibited the migration and tube formation of HUVECs. Quantitative proteomics analysis identified 27 upregulated proteins and 9 downregulated proteins in APS-exos versus NC-exos. We hypothesized that apolipoprotein H (APOH) may be a core protein, and the analysis of clinical samples was consistent with finding from the proteomic TMT analysis. APOH-exos led to APS-like birth outcomes. APOH-exos directly enter HUVECs and may play a role through the phospho-extracellular signal-regulated kinase pathway.ConclusionsOur study suggests that both APS-exos and APOH-exos impair vascular development and lead to pregnancy complications. APOH-exos may be key actors in the pathogenesis of APS. This study provides new insights into the pathogenesis of APS and potential new targets for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.