Immunotherapy, represented by immune checkpoint inhibitors (ICIs), has greatly improved the clinical efficacy of malignant tumor therapy. ICI-mediated antitumor responses depend on the infiltration of T cells capable of recognizing and killing tumor cells. ICIs are not effective in "cold tumors", which are characterized by the lack of T-cell infiltration. To realize the full potential of immunotherapy and solve this obstacle, it is essential to understand the drivers of T-cell infiltration into tumors. We present a critical review of our understanding of the mechanisms underlying “cold tumors”, including impaired T-cell priming and deficient T-cell homing to tumor beds. “Hot tumors” with significant T-cell infiltration are associated with better ICI efficacy. In this review, we summarize multiple strategies that promote the transformation of "cold tumors" into “hot tumors” and discuss the mechanisms by which these strategies lead to increased T-cell infiltration. Finally, we discuss the application of nanomaterials to tumor immunotherapy and provide an outlook on the future of this emerging field. The combination of nanomedicines and immunotherapy enhances cross-presentation of tumor antigens and promotes T-cell priming and infiltration. A deeper understanding of these mechanisms opens new possibilities for the development of multiple T cell-based combination therapies to improve ICI effectiveness.
The epithelial-mesenchymal transition (EMT) is a pivotal step involved in cancer recurrence and metastasis. In addition, the activation of the EMT program can induce a cancer stem cell (CSC)-like phenotype and programmed death-ligand 1 (PD-L1) expression in head and neck squamous cell carcinoma (HNSCC). The CMTM family has reported as an important regulator in this process. Here, we investigated the role of CMTM4 in HNSCC. We indicated that CMTM4 was overexpressed in human and mouse HNSCC samples and in HNSCC cell lines by immunohistochemistry and Western blot. A high expression level of CMTM4 was correlated with advanced lymph node metastasis and a negative prognosis. CMTM4-knockdown by small interfering RNA downregulated the EMT process and inhibited the migration and invasion abilities of tumor cells. Moreover, knockdown of CMTM4 decreased CSC-associated markers via the protein kinase B pathway.Notably, CMTM4-knockdown inhibited the expression of interferon-γ induced PD-L1 in HNSCC cells. A positive correlation was found between CMTM4 expression and CD8 + and PD-1 + cell density in the stroma. Our findings indicated that CMTM4 may play an important role in regulating EMT/CSC phenotypes and PD-L1 expression. This study may reinforce the interest in CMTM4 as a potential target for the prognosis and treatment of HNSCC.
Pyroptosis is a form of proinflammatory cell death that depends on the gasdermin family of proteins. The main features of pyroptosis are altered membrane permeability, cell swelling, membrane rupture, and the ability to mobilize a strong immune response. The relationship between pyroptosis and cancer has become a popular topic in immunological research. Multiple strategies for inducing pyroptosis in cancer cells have been developed for cancer therapy, including chemotherapy, small molecule drugs, and nanomedicines. In this review, we systematically discuss recent advances in research on the mechanisms of pyroptosis, and compare pyroptosis with apoptosis and necroptosis from several aspects. The development of various experimental systems has accompanied rapid progress in this field, but little consensus on monitoring pyroptosis is currently available. We focus on techniques commonly used to monitor pyroptosis, and describe future techniques that may be used to increase our knowledge in this field. Overall, the advancement of pyroptosis detection methods will help researchers to better investigate the relationships between pyroptosis and various cancers, and should provide insights into the use of these promising tools for cancer treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.