China is the largest coal consumer in the world. The massive exploitation and utilization of coal resources has resulted in serious problems of heavy metal pollution and environmental contamination, such as soil degradation, water pollution, crop damage, and even threatening human lives. Therefore, monitoring soil heavy metal pollution quickly and in real time is an urgent task at present. This research not only formulated a new preprocessing method enlightened by few-shot learning for soil hyperspectral data, but also combined it with other soil-related auxiliary information to extract effective information from the soil hyperspectrum, at the end of which different regression methods were adopted to predict soil heavy metal contamination. This test used 168 actual soil samples from the Eastern Junggar coalfield in Xinjiang for verification. Since copper in the soil is a trace element and the corresponding spectral characteristics are affected by other impurities, improper use of hyperspectral preprocessing methods may introduce interference information or may delete useful information, which makes the model effect unsatisfied. To effectively address the above problems, the preprocessing method of this experiment combined the second-order differential derivation, data enhancement method together with the Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.