The trajectory-tracking performance of the automobile electro-coating conveying mechanism is severely interrupted by highly nonlinear crossing couplings, unmodeled dynamics, parameter variation, friction, and unknown external disturbance. In this article, a sliding mode control with a nonlinear disturbance observer is proposed for high-accuracy motion control of the conveying mechanism. The nonlinear disturbance observer is designed to estimate not only the internal/ external disturbance but also the model uncertainties. Based on the output of the nonlinear disturbance observer, a sliding mode control approach is designed for the hybrid series-parallel mechanism. Then, the stability of the closed-loop system is proved by means of a Lyapunov analysis. Finally, simulations with typical desired trajectory are presented to demonstrate the high performance of the proposed composite control scheme.
Full-face hard rock tunnel boring machines (TBM) are essential equipment in highway and railway tunnel engineering construction. During the tunneling process, TBM have serious vibrations, which can damage some of its key components. The support system,an important part of TBM, is one path through which vibrational energy from the cutter head is transmitted. To reduce the vibration of support systems of TBM during the excavation process, based on the structural features of the support hydraulic system, a nonlinear dynamical model of support hydraulic systems of TBM is established. The influences of the component structure parameters and operating conditions parameters on the stiffness characteristics of the support hydraulic system are analyzed. The analysis results indicate that the static stiffness of the support hydraulic system consists of an increase stage, stable stage and decrease stage. The static stiffness value increases with an increase in the clearances. The pre-compression length of the spring in the relief valve affects the range of the stable stage of the static stiffness, and it does not affect the static stiffness value. The dynamic stiffness of the support hydraulic system consists of a U-shape and reverse U-shape. The bottom value of the U-shape increases with the amplitude and frequency of the external force acting on the cylinder body, however, the top value of the reverse U-shape remains constant. This study instructs how to design the support hydraulic system of TBM.
This article seeks to achieve high tracking performance of the hybrid automobile electro-coating conveying mechanism with disturbances and uncertainties. An integral sliding mode control scheme is first presented to eliminate the reaching phase in sliding mode control. Then, an adaptive integral sliding mode controller is designed without knowing the disturbance information. Finally, a composite strategy, referred to as nonlinear disturbance observer (NDO)-based adaptive integral sliding model control, is put forward to further reduce the switching gain. By compensating the lumped disturbances via a NDO, the switching gain is only required to be higher than upper bound of the disturbance estimation error which is much smaller than actual disturbance. The results of both numerical simulations and experiments show that the proposed approach has good control performance especially in reducing the switching gain and alleviating the chattering problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.