18F-FPPRGD2, which was approved for clinical study recently, has favorable properties for integrin targeting and showed potential for antiangiogenic therapy and early response monitoring. However, the time-consuming multiple-step synthesis may limit its widespread applications in the clinic. In this study, we developed a simple lyophilized kit for labeling PRGD2 peptide (18F-AlF-NOTA-PRGD2, denoted as 18F-alfatide) using a fluo-ride–aluminum complex that significantly simplified the labeling procedure. Methods Nine patients with a primary diagnosis of lung cancer were examined by both static and dynamic PET imaging with 18F-alfatide, and 1 tuberculosis patient was investigated using both 18F-alfatide and 18F-FDG imaging. Standardized uptake values were measured in tumors and other main organs at 30 min and 1 h after injection. Kinetic parameters were calculated by Logan graphical analysis. Immunohisto-chemistry and staining intensity quantification were performed to confirm the expression of integrin αvβ3. Results Under the optimal conditions, the whole radiosynthesis including purifica-tion was accomplished within 20 min with a decay-corrected yield of 42.1% ± 2.0% and radiochemical purity of more than 95%. 18F-alfatide PET imaging identified all tumors, with mean standardized uptake values of 2.90 ± 0.10. Tumor-to-muscle and tumor-to-blood ratios were 5.87 ± 2.02 and 2.71 ± 0.92, respectively. Conclusion 18F-alfatide can be produced with excellent radiochemical yield and purity via a simple, 1-step, lyophilized kit. PET scanning with 18F-alfatide allows specific imaging of αvβ3 expression with good contrast in lung cancer patients. This technique might be used for the assessment of angiogene-sis and for planning and response evaluation of cancer therapies that would affect angiogenesis status and integrin expression levels.
Background/Aims: A disintegrin and metalloprotease (ADAM) 17 has been reported to be implicated in cancer cells invasion. Nevertheless, its potential role in lung adenocarcinoma has not been addressed clearly. Methods: RT-PCR and Western blot were used to detect the expression of miR-326 and ADAM17 in lung adenocarcinoma samples (n=73). miR-326 mimics and inhibitor were tansfected in human A549 and SPCA1 cell lines. The transwell assay was used to detect the cell invasive ability. The regulation mechanism was evaluated by luciferase reporter assay. The markers of (epithelial-to-mesenchymal transition) EMT were detected by using Western blot assay. Results: We found increased expression of ADAM17 in lung adenocarcinoma and cell lines. In vitro, up-regulation of ADAM17 promoted cells invasion, while silencing of ADAM17 inhibited cells invasion. Meanwhile, ADAM17 could affect the markers of EMT. Furthermore, we confirmed that ADAM17 is a target of miR-326, which is involved in EMT and cells invasion. Conclusions: These findings revealed that ADAM17, a target of miR-326, promoted EMT-induced cells invasion in lung adenocarcinoma.
We concluded that circulating MACC1 mRNA represents a potential noninvasive, diagnostic and prognostic marker for NSCLC.
Background10-Hydroxycamptothecin (10-HCPT), isolated from a Chinese tree Camptotheca acuminate, inhibits the activity of topoisomerase I and has a broad spectrum of anticancer activity in vitro and in vivo. It has been shown that HCPT is more active and less toxic than conventional camptothecins and can induce cancer cell apoptosis. However, the mechanisms of HCPT-induced apoptosis in colon cancer cells remain unclear. In this study, we investigated the effects of HCPT on apoptosis of colon cancer and underlying mechanism.MethodsCell proliferation was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, and apoptosis was measured using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Expression of genes was detected using real-time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Tumor growth in vivo was evaluated using a nude mouse xenograft model.ResultsHCPT could significantly inhibit cell proliferation and induce apoptosis in colon cancer SW1116 and Colo 205 cells in dose- and time-dependent manners. HCPT treatment activated the activities of caspase 3, 7, 8 and 9, downregulated the expression of survivin, survivinΔEx3, survivin-3B and XIAP, and upregulated expression of surviving 2B. Moreover, the combination of HCPT and 5-fluorouracial (5-FU) synergistically induced apoptosis and downregulated the expression of survivin and XIAP. Knockdown of survivin and XIAP by siRNA sensitized colon cancer to HCTP-induced apoptosis. Furthermore, HCPT treatment significantly inhibited SW1116 xenograft tumor growth.ConclusionsOur results elucidate new mechanisms of HCPT antitumor by the downregulation of survivin and XIAP expression. The combination of HCPT with 5-FU or IAP inhibitors may be a potential strategy for colon cancer treatment.
Background: The matrix metalloproteinases (MMPs)-2, -9 and -7 are thought to be associated with tumor invasion, metastasis, and angiogenesis. However, their possible roles in early-stage lung cancer are not clear. We measured the activity of MMP-2, -7 and -9 in early-stage lung cancer tissues. Material and Methods: Normal lung tissues and cancer tissues were collected from 60 consecutive stage-I non-small cell lung cancer (NSCLC) patients. The activities of MMP-2 and MMP-9 were determined by gelatin zymography, and the activity of MMP-7 was determined by casein zymography. Furthermore, the ratio of the active form of MMP-2 in tumor tissue (T) compared with normal tissue (N) was determined, and the survival in the groups with different MMP-2 T:N ratio was compared. Results: The activity of both MMP-2 and MMP-9 was detected in all cancer and normal tissues. Interestingly, MMP-9 activity was significantly reduced, whereas MMP-2 activity was significantly increased, in cancer tissues compared to normal tissues. The survival rate of the MMP-2 T:N ratio > 2.5 group was 57.45%, which was significantly reduced compared with that of the T:N ratio ≤ 2.5 group (86.78%). Conclusion: Our findings suggest that MMP-2, but not MMP-9 and MMP-7, may be implicated in early-stage tumor invasion, metastasis, and angiogenesis in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.