This paper analyses the relationship between the coil design parameters and the system performance, including power transfer efficiency and amount, when circular flat spiral coils are adopted in a wireless power transfer (WPT) system. Coil design variables including outer radius, inner radius, channel width and coil turns are thoroughly studied to improve the system performance with a limited maximum outer radius for practical purposes. A two-coil WPT system has been built to verify the analysis, and the experimental results show good consistency with the theoretical calculations and simulation results, which show that the coil design parameters have a significant impact on the system performance, even with the same coil size. In the experiments, the coil-to-coil distance is 150 mm, the maximum coil outer radius is limited in 300 mm, and the DC input voltage and the load resistance are 100 V and 5 Ω, respectively. When the coils are tightly-wound in the most traditional way to maximize the coil size, the coil-system efficiency is 62.6% with only 4.5 W load power. In contrast, the efficiency optimized coil can improve the coil-system efficiency to 91.2% with the outer radius stayed the same. Besides, when the power transfer efficiency and amount are considered simultaneously, the system can achieve 1279 W load power with 85.94% coil-system efficiency.
In this paper, the Routh criterion has been used to analyze the stability of a self-excited induction generator-based isolated system which is regarded as an autonomous system. Special focus has been given to the load capacity of the self-excited induction generator. The state matrix of self-excited induction generators with resistor-inductor load has been established based on transient equivalent circuits in the stator stationary reference-frame. The recursive Routh table of self-excited induction generators is established by the characteristic polynomial coefficients of the state matrix. According to the Routh stability criterion, the necessary and sufficient condition to predict the critical loads of self-excited induction generators is deduced, from which the critical load impedance can be calculated. A simple self-excited induction generator-based isolated power system has been built up with a 2.2 kW self-excited induction generator. The theoretical analysis and experiments were all carried out based on this platform. In the range determined by the minimum excitation capacitance (C min ) and the maximum excitation capacitance (C max ), the critical loads under various power factors have been calculated. The agreement of the calculated theoretical results and experimental results demonstrate the effectiveness and accuracy of the proposed analysis method. The conclusions achieved lay a foundation for further application of Routh stability criterion in self-excited induction generator-based power systems analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.