Cells have an internal compass that enables them to move along shallow chemical gradients. As amoeboid cells migrate, signaling events such as Ras and PI3K activation occur spontaneously on pseudopodia. Uniform stimuli trigger a symmetric response, whereupon cells stop and round up; then localized patches of activity appear as cells spread. Finally cells adapt and resume random migration. In contrast, chemotactic gradients continuously direct signaling events to the front of the cell. Local-excitation, global-inhibition (LEGI) and reaction-diffusion models have captured some of these features of chemotaxing cells, but no system has explained the complex response kinetics, sensitivity to shallow gradients, or the role of recently observed propagating waves within the actin cytoskeleton. We report here that Ras and PI3K activation move in phase with the cytoskeleton events and, drawing on all of these observations, propose the LEGI-biased excitable network hypothesis. We formulate a model that simulates most of the behaviors of chemotactic cells: In the absence of stimulation, there are spontaneous spots of activity. Stimulus increments trigger an initial burst of patches followed by localized secondary events. After a few minutes, the system adapts, again displaying random activity. In gradients, the activity patches are directed continuously and selectively toward the chemoattractant, providing an extraordinary degree of amplification. Importantly, by perturbing model parameters, we generate distinct behaviors consistent with known classes of mutants. Our study brings together heretofore diverse observations on spontaneous cytoskeletal activity, signaling responses to temporal stimuli, and spatial gradient sensing into a unified scheme.adaptation | cell migration | excitability | inflammation | metastasis
Summary Background Studies show that high phosphotidylinositol 3,4,5 tris phosphate (PIP3) promotes cytoskeletal rearrangements and alters cell motility and chemotaxis, possibly through activation of PKBs. However, chemotaxis can still occur in the absence of PIP3 and the identities of the PIP3 independent pathways remain unknown. Results Here, we outline a PIP3-independent pathway linking temporal and spatial activation of PKBs by Tor complex 2 (TorC2) to the chemotactic response. Within seconds of stimulating Dictyostelium cells with chemoattractant, two PKB homologs, PKBA and PKBR1, mediate transient phosphorylation of at least eight proteins, including Talin, PI4P 5-kinase, two RasGefs, and a RhoGap. Surprisingly, all of the substrates are phosphorylated with normal kinetics in cells lacking PI 3-kinase activity. Cells deficient in TorC2 or PKB activity show reduced phosphorylation of the endogenous substrates and are impaired in chemotaxis. The PKBs are activated through phosphorylation of their hydrophobic motifs via TorC2 and subsequent phosphorylation of their activation loops. These chemoattractant-inducible events restricted to the cell’s leading edge even in the absence of PIP3. Activation of TorC2 depends on heterotrimeric G-protein function and intermediate G-proteins, including Ras GTPases. Conclusions The data lead to a model where cytosolic TorC2, encountering locally activated small G-protein(s) at the leading of the cell, becomes activated and phosphorylates PKBs. These in turn phosphorylate a series of signaling and cytoskeletal proteins, thereby regulating directed migration.
LiuThe purpose of this form is to provide readers of your manuscript with information about your other interests that could influence how they receive and understand your work. The form is designed to be completed electronically and stored electronically. It contains programming that allows appropriate data display. Each author should submit a separate form and is responsible for the accuracy and completeness of the submitted information. The form is in six parts.
Directed cell migration involves signaling events that lead to local accumulation of PI(3,4,5)P(3), but additional pathways act in parallel. A genetic screen in Dictyostelium discoideum to identify redundant pathways revealed a gene with homology to patatin-like phospholipase A(2). Loss of this gene did not alter PI(3,4,5)P(3) regulation, but chemotaxis became sensitive to reductions in PI3K activity. Likewise, cells deficient in PI3K activity were more sensitive to inhibition of PLA(2) activity. Deletion of the PLA(2) homolog and two PI3Ks caused a strong defect in chemotaxis and a reduction in receptor-mediated actin polymerization. In wild-type cells, chemoattractants stimulated a rapid burst in an arachidonic acid derivative. This response was absent in cells lacking the PLA(2) homolog, and exogenous arachidonic acid reduced their dependence on PI3K signaling. We propose that PLA(2) and PI3K signaling act in concert to mediate chemotaxis, and metabolites of PLA(2) may be important mediators of the response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.