A hydrophilic, hydrostable porous metal organic framework (MOF) material-MIL-101 (Cr) was successfully doped into the dense selective polyamide (PA) layer on the polysulfone (PS) ultrafiltration (UF) support to prepare a new thin film nanocomposite (TFN) membrane for water desalination. The TFN-MIL-101 (Cr) membranes were characterized by SEM, AFM, XPS, wettability measurement and reverse osmosis (RO) test. The porous structures of MIL-101 (Cr) can establish direct water channels in the dense selective PA layer for water molecules to transport through quickly, leading to the increasing water permeance of membranes. With good compatibility between MIL-101 (Cr) nanoparticles and the PA layer, the lab made TFN-MIL-101 (Cr) membranes integrated tightly and showed a high NaCl salt rejection. MIL-101 (Cr) nanoparticles increased water permeance to 2.2 L/m2·h·bar at 0.05 w/v % concentration, 44% higher than the undoped PA membranes; meanwhile, the NaCl rejection remained higher than 99%. This study experimentally verified the potential use of MIL-101 (Cr) in advanced TFN RO membranes, which can be used in the diversified water purification field.
Carbon nanotubes ͑CNTs͒, owing to their exceptionally high thermal conductivity, have a potential to be employed in micro-and optoelectronic devices for integrated circuit ͑IC͒ cooling. In this study we describe a photothermal metrology intended to evaluate the thermal conductivity of a vertically aligned CNT array ͑VCNTA͒ grown on a silicon ͑Si͒ substrate. Plasma-enhanced chemical vapor deposition, with nickel ͑Ni͒ as a catalyst, was used to grow CNT. The experimentally evaluated thermal conductivity of the VCNTA and the thermal contact resistance at the interface between the VCNTA and the "hot" surface was found to be in a satisfactory agreement with theoretical predictions. The measured effective thermal resistance is measured to be 0.12ϳ 0.16 cm 2 •K/W. This resistance was compared to the measured resistance of commercially available thermal grease. Based on this comparison, we conclude that, although the thermal resistance of CNTs might not be as low as it might be desirable, there exists a definite incentive for using VCNTA of the type in question for IC cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.