Background: The blast-and earth-fill dam of the Kambarata 2 hydropower station is situated in the seismically active Central Tien Shan region of the Kyrgyz Republic. More than 70% of the dam volume was produced during a blast event on December 22, 2009. In 2010-2011, dam construction was completed after earth filling on top of the blasted material and installing concrete and clay screens together with bentonite grouts. A geophysical survey had been completed in 2012-2013, mainly to monitor the resistivities inside the dam. Results: The geophysical survey completed on the Kambarata 2 dam site showed lower resistivity zones in the earth fill and relatively higher resistivities in the blast-fill material. Topographic, geophysical and piezometric inputs had been compiled within a 3D geomodel constructed with GOCAD software. This model was compared with the design structure of the dam in order to define the upper limits of the underlying alluvium, the deposited blast fill, earth fill and top gravel materials (represented by the dam surface). The central cross-section of this model was extrapolated over the full length of the main dam profile. Conclusions: On the basis of a calibrated hydrogeological model and known geomechanical properties of the materials, dam stability calculations were completed for different scenarios considering different reservoir levels and varying seismic conditions. Some of these scenarios indicated a critical vulnerability of the dam, e.g., if impacted by a horizontal seismic acceleration of Ah = 0.3 g and a vertical seismic acceleration Av = 0.15 g, with an estimated return period of 475 years. As a general conclusion, it was noted that this case study can be used as an example for surveys on much larger natural -landslide or moraine -dams. A series of geophysical methods (e.g., electrical and electro-magnetic techniques, seismic and microseismic measurements) can be applied to investigate even very deep dam structures. These methods have the advantage over classical direct prospecting techniques, such as drilling, of using equipment that is much lighter and thus more easily transportable and applicable in difficult terrain. Furthermore, they can provide continuous information over wider areas. This specific application to a blast-fill dam allows us to better outline the strengths and weaknesses of the exploration types and geomodels as a series of investigated parameters can be verified more easily than for natural dams.
Four sorts of zirconia dental ceramic systems including Cercon smart, Lava, Porcera, and CEREC 3 were studied to analyze fracture mechanism of different CAD/CAM zirconia ceramic. In each system, 12 sectioned specimens were prepared, 6 specimens were taken as controlled group, 6 as experimental group. Quasi-statistic loading before and after cyclic loading was applied at the veneer surface of the specimen. Deformation and crack initiation were monitored with camera in order to carry out digital image correlation (DIC) analysis. The results showed that median cracks were observed under the yielding zone. Specimens fractured along the core/veneer interface with the crack growth. No cone crack was confirmed and fracture only existed in veneer layer. After cyclic loading there were no significant differences for the four ceramic systems in terms of the critical load, while significant differences existed in terms of the fracture load. Both critical load and fracture load were lowered after cyclic loading. After cycling loading, the 4 tested zirconia CAD/CAM ceramic possess high fracture strength to meet the requirement for oral functions. The fracture modes of the four zirconia ceramic systems indicate that the strength of the veneer should be enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.