The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
The rapid development of crops with multiple transgenic traits arouses the need for an efficient system for creating stacked cultivars. Most major crops rely on classical breeding to introgress the transgene from a laboratory variety to the numerous cultivars adapted to different growing regions. Even with vegetative propagated crops, genetic crosses are conducted during varietal improvement prior to vegetative cloning. The probability to assort the 'x' number of transgenic loci into a single genome may seem trivial, (¼) (x) for a diploid species, but given the 'y' number of other nontransgenic traits that breeders also need to assemble into the same genome, the (¼) (x+y) probability for a 'breeding stack' could quickly make the line conversion process unmanageable. Adding new transgenes onto existing transgenic varieties without creating a new segregating locus would require site-specific integration of new DNA at the existing transgenic locus. Here, we tested a recombinase-mediated gene-stacking scheme in tobacco. Sequential site-specific integration was mediated by the mycobacteriophage Bxb1 integrase-catalyzed recombination between attP and attB sites. Transgenic DNA no longer needed after integration was excised by Cre recombinase-mediated recombination of lox sites. Site-specific integration occurred in ~10% of the integration events, with half of those events usable as substrates for a next round of gene stacking. Among the site-specific integrants, however, a third experienced gene silencing. Overall, precise structure and reproducible expression of the sequentially added triple traits were obtained at an overall rate of ~3% of the transformed clones--a workable frequency for the development of commercial cultivars. Moreover, since neither the Bxb1-att nor the Cre-lox system is under patent, there is freedom to operate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.