Meat and dairy products provide essential nutrients that support growth, functions, immunity, and general human well-being. Xilingol grassland (203,000 km 2) in China is a natural grazing region, known for the free raising of animals for human consumption and its low pollution levels, resulting in the production of high-quality meat and dairy products from sheep and goat, among others. The average annual output of sheep and goat in Xilingol grassland is more than ten million of animals. Nevertheless, some producers and traders deliberately adulterate meat and dairy products with less expensive substitutes, which unbalances market competition and disregards consumer's interests. Further, product authentication is required to manage health risks and to comply with religious norms. Therefore, the development of efficient approaches for product authentication is essential to ensure the purity of food products. Here, we developed a specific and highly sensitive method to evaluate adulteration of meat and milk from sheep and goat based on DNA detection using real-time PCR with TaqMan technology. Distinct analytical PCR-based methods have been developed for DNA detection in animal-derived products such as meat and dairy
To detect the expression of cancerous inhibitor of phosphatase 2A (CIP2A) in chronic myelocytic leukemia (CML) and investigate the mechanism underlying CIP2A knockdown-mediated cell proliferation and apoptosis as well as the interaction of CIP2A with breakpoint cluster region-Abelson leukemia virus (BCR-ABL). CIP2A mRNA and protein expression in chronic myelocytic leukemia-chronic (CML-CP) patients and healthy controls were determined by RT-PCR and Western blot. In vivo, c-Myc expression, PP2A activity, cell proliferation, and apoptosis of CML cells were detected with CIP2A depletion. In addition, the relationship among CIP2A, BCR-ABL, and tyrosine phosphatase SHP-1 was explored by depleting/overexpressing CIP2A or inhibiting BCR-ABL. The level of CIP2A mRNA was higher in CML-CP patients than healthy controls (56/74, 75.7 % vs. 1/35, 2.9 %, P < 0.001), and CIP2A protein was overexpressed in corresponding specimens. CIP2A knockdown by siRNA reduced the level of c-Myc protein and clonogenic formation, inhibited the activity of PP2A, K562 cell proliferation, and promoted cell apoptosis. Suppressing BCR-ABL by imatinib mesylate (IM) significantly decreased CIP2A expression. CIP2A knockdown decreased BCR-ABL but increased SHP-1 expression, and CIP2A overexpression had the reverse effect. CIP2A is overexpressed in CML-CP patients, and its expression may promote CML pathogenesis. CIP2A and BCR-ABL can regulate each other in a positive feedback loop. CIP2A may be a useful therapeutic target in CML-CP, particularly in patients with IM resistance. However, further studies are needed to validate the interaction between CIP2A and BCR-ABL using other tyrosine kinase inhibitors than IM.
Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL), adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2) was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.