Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of liver damage characterized by abnormal hepatic fat accumulation and inflammatory response. Although the molecular mechanisms responsible for the disease are not yet fully understood, the pathogenesis of NAFLD likely involves multiple signals. The identification of effective therapeutic strategies to target these signals is of utmost importance. Carnosic acid (CA), as a phenolic diterpene with anticancer, anti-bacterial, anti-diabetic and neuroprotective properties, is produced by many species of the Lamiaceae family. Myristoylated alanine-rich C-kinase substrate (MARCKS) is a major protein kinase C (PKC) substrate in many different cell types. In the present study, wild-type C57BL/6 and MARCKS-deficient mice were randomly divided into the normal chow- or high-fat (HF) diet-fed groups. The HF diet increased the fasting glucose and insulin levels, and promoted glucose intolerance in the wild-type mice. MARCKS deficiency further upregulated intolerance, fasting glucose and insulin. The HF diet also promoted hepatic steatosis, serum alanine transaminase (ALT) and aspartate transaminase (AST) activity, inflammation and lipid accumulation in the wild-type mice. These responses were accelerated in the MARCKS-deficient mice. Importantly, increased inflammation and lipid accumulation were associated with phosphoinositide 3-kinase (PI3K)/AKT, NLR family pyrin domain containing 3 (NLRP3)/nuclear factor-κB (NF-κB) and sterol regulatory element binding protein-1c (SREBP-1c) signaling pathway activation. The mice treated with CA exhibited a significantly improved glucose and insulin tolerance. The production of pro-inflammatory cytokines and lipid accumulation were suppressed by CA. Significantly, MARCKS was reduced in mice fed the HF diet. CA treatment upregulated MARCKS expression compared to the HF group. Furthermore, the activation of the PI3K/AKT, NLRP3/NF-κB and SREBP-1c signaling pathways was inhibited by CA. Taken together, our data suggest that CA suppresses inflammation and lipogenesis in mice fed a HF diet through MARCKS regulation. Thus, CA may be prove to be a useful anti-NAFLD agent.
Baicalin is a flavonoid extracted from Scutellariae Radix and shows a variety of biological activities as reducing lipids, diminishing inflammation, and inhibiting bacterial infection. However, there is no report of baicalin against CVB3 infection. In this study, we found that baicalin can reduce viral titer in a dose-dependent manner in vitro at a dose with no direct virucidal effect. Moreover, we revealed that baicalin can also improve survival rate, reduce heart weight/body weight ratio, prevent virus replication, and relieve myocardial inflammation in the acute viral myocarditis mouse model induced by CVB3. Then, in order to explore the mechanism of baicalin inhibiting CVB3 replication, we respectively examined the expression of autophagosome marker LC3-II by Western blot, tested the concentration of free fatty acid (FFA) and cholesterol (CHO) by commercial kits, detected the mRNA levels of fatty acid synthase (Fasn) and acetyl coenzyme a carboxylase (ACC) by RT-PCR, and observed the lipid content of cells by fluorescence staining. The results showed that CVB3 infection increased autophagosome formation and lipid content in HeLa cells, but these changes were significantly blocked by baicalin. Finally, in order to confirm that baicalin inhibits viral replication and reduces autophagosome formation by reducing cellular lipids, we added exogenous palmitate to cell culture supernatants to promote intracellular lipid synthesis and found that palmitate did not alter LC3-II and CVB3/VP1 expression in HeLa cells with or without CVB3 infection. Interestingly, palmitate can reverse the inhibitory effect of baicalin on autophagosome formation and viral replication. In conclusion, our results indicated that lipids play an important role in CVB3 replication, and the effect of baicalin against CVB3 was associated with its ability to reduce cellular lipid synthesis to limit autophagosome formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.