BackgroundAlzheimer’s disease (AD) causes progressive loss of memory and cognition, exacerbated by APOE4, the greatest genetic risk factor for AD. One proposed mechanism for apolipoprotein E (apoE) effects on cognition is via NMDAR-dependent signaling. APOE genotype-specific effects on this pathway were dissected using EFAD-transgenic (Tg) mice (5xFAD mice, that over-express human amyloid-beta (Aβ) via 5 familial-AD (FAD) mutations, and express human apoE), and 5xFAD/APOE-knockout (KO) mice. Previous data from EFAD-Tg mice demonstrate age-dependent (2-6 months), apoE-specific effects on the development of Aβ pathology. This study tests the hypothesis that apoE4 impairs cognition via modulation of NMDAR-dependent signaling, specifically via a loss of function by comparison of E4FAD mice with 5xFAD/APOE-KO mice, E3FAD and E2FAD mice.ResultsUsing female E2FAD, E3FAD, E4FAD and 5xFAD/APOE-KO mice aged 2-, 4-, and 6-months, the Y-maze and Morris water maze behavioral tests were combined with synaptic protein levels as markers of synaptic viability. The results demonstrate a greater age-induced deficit in cognition and reduction in PSD95, drebrin and NMDAR subunits in the E4FAD and 5xFAD/APOE-KO mice compared with E2FAD and E3FAD mice, consistent with an apoE4 loss of function. Interestingly, for NMDAR-mediated signaling, the levels of p-CaMK-II followed this same apoE-specific pattern as cognition, while the levels of p-CREB and BDNF demonstrate an apoE4 toxic gain of function: E2FAD > E3FAD > 5xFAD/APOE-KO > E4FAD.ConclusionThese findings suggest that compared with E2FAD and E3FAD, E4FAD and 5xFAD/APOE-KO mice exhibit enhanced age-induced reductions in cognition and key synaptic proteins via down-regulation of an NMDAR signaling pathway, consistent with an apoE4 loss of function. However, levels of p-CREB and BDNF, signaling factors common to multiple pathways, suggest a gain of toxic function. Publications in this field present contradictory results as to whether APOE4 imparts a loss or gain of function. As with the results reported herein, the overall effect of APOE4 on a given CNS-specific measure will be the product of multiple overlapping mechanisms. Thus, caution remains critical in determining whether APOE gene inactivation or therapies that correct the loss of positive function related to apoE4, are the appropriate therapeutic response.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-015-0002-2) contains supplementary material, which is available to authorized users.
Oxidative stress plays an important role in the progression of Alzheimer's disease (AD) and other neurodegenerative conditions. Glutathione (GSH), the major antioxidant in the central nervous system, is primarily synthesized and released by astrocytes. We determined if β-amyloid (Aβ42), crucially involved in Alzheimer's disease, affected GSH release. Monomeric Aβ (mAβ) stimulated GSH release from cultured cortical astrocytes more effectively than oligomeric Aβ (oAβ) or fibrillary Aβ (fAβ). Monomeric Aβ increased the expression of the transporter ABCC1 (also referred to as MRP1) that is the main pathway for GSH release. GSH release from astrocytes, with or without mAβ stimulation, was reduced by pharmacological inhibition of ABCC1. Astrocytes robustly express connexin proteins, especially connexin43 (Cx43), and mAβ also stimulated Cx43 hemichannel-mediated glutamate and GSH release. Aβ-stimulation facilitated hemichannel opening in the presence of normal extracellular calcium by reducing astrocyte cholesterol level. Aβ treatment did not alter the intracellular concentration of reduced or oxidized glutathione. Using a mouse model of AD with early onset Aβ deposition (5xFAD), we found that cortical ABCC1 was significantly increased in temporal register with the surge of Aβ levels in these mice. ABCC1 levels remained elevated from 1.5 to 3.5 months of age in 5xFAD mice, before plunging to subcontrol levels when amyloid plaques appeared. Similarly, in cultured astrocytes, prolonged incubation with aggregated Aβ, but not mAβ, reduced induction of ABCC1 expression. These results support the hypothesis that in the early stage of AD pathogenesis, less aggregated Aβ increases GSH release from astrocytes (via ABCC1 transporters and Cx43 hemichannels) providing temporary protection from oxidative stress which promotes AD development.
Diabetic retinopathy (DR) is a leading cause of blindness globally and its pathogenesis has still not been completely elucidated. Some studies show a close relation between oxidative stress and DR. This study was aimed to investigate the effects of anti-oxidant in DR and expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) from retinal blood vessels in diabetic rats. Diabetic rat models were established by intraperitoneal injection of streptozotocin (60 mg/kg) and confirmation of high serum glucose levels in the animals. Antioxidant N-acetylcysteine was given to diabetic rats to elicit antioxidative responses, and rats were sacrificed at 3 and 5 months. Ultrastructures of retinal vascular tissues were observed under transmission electron microscope, and pathology of retinal capillaries was examined using retinal vascular digest preparations. Changes in the expression of VEGF and ICAM-1 were examined by immunofluorescence; and reactive oxygen species contents in the retinas were detected using dichlorofluorescein assay. Compared with normal rats, diabetic rats displayed significant retinopathy both under electronic and light microscopy, accompanied by elevated reactive oxygen species contents in the retinas; N-acetylcysteine treatment alleviated the pathological changes and also decreased reactive oxygen species, most significantly at 5 months. VEGF and ICAM-1 expressions were significantly up-regulated in retinal blood vessels from diabetic rats, and such up-regulation was attenuated by N-acetylcysteine treatment. The expression of both factors returned to basal levels after 5-month treatment with N-acetylcysteine. Long-term N-acetylcysteine treatment exerts protective effects on the diabetic retinas, possibly through its down-regulation of the expression of VEGF and ICAM-1, and reduction of reactive oxygen species content in retinal vascular tissues in diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.