The short text has been the prevalent format for information of Internet in recent decades, especially with the development of online social media, whose millions of users generate a vast number of short messages everyday. Although sophisticated signals delivered by the short text make it a promising source for topic modeling, its extreme sparsity and imbalance brings unprecedented challenges to conventional topic models like LDA and its variants. Aiming at presenting a simple but general solution for topic modeling in short texts, we present a word co-occurrence network based model named WNTM to tackle the sparsity and imbalance simultaneously. Different from previous approaches, WNTM models the distribution over topics for each word instead of learning topics for each document, which successfully enhance the semantic density of data space without importing too much time or space complexity. Meanwhile, the rich contextual information preserved in the wordword space also guarantees its sensitivity in identifying rare topics with convincing quality. Furthermore, employing the same Gibbs sampling with LDA makes WNTM easily to be extended to various application scenarios. Extensive validations on both short and normal texts testify the outperformance of WNTM as compared to baseline methods. And finally we also demonstrate its potential in precisely discovering newly emerging topics or unexpected events in Weibo at pretty early stages.
No abstract
BackgroundConventional differential gene expression analysis by methods such as student’s t-test, SAM, and Empirical Bayes often searches for statistically significant genes without considering the interactions among them. Network-based approaches provide a natural way to study these interactions and to investigate the rewiring interactions in disease versus control groups. In this paper, we apply weighted graphical LASSO (wgLASSO) algorithm to integrate a data-driven network model with prior biological knowledge (i.e., protein-protein interactions) for biological network inference. We propose a novel differentially weighted graphical LASSO (dwgLASSO) algorithm that builds group-specific networks and perform network-based differential gene expression analysis to select biomarker candidates by considering their topological differences between the groups.ResultsThrough simulation, we showed that wgLASSO can achieve better performance in building biologically relevant networks than purely data-driven models (e.g., neighbor selection, graphical LASSO), even when only a moderate level of information is available as prior biological knowledge. We evaluated the performance of dwgLASSO for survival time prediction using two microarray breast cancer datasets previously reported by Bild et al. and van de Vijver et al. Compared with the top 10 significant genes selected by conventional differential gene expression analysis method, the top 10 significant genes selected by dwgLASSO in the dataset from Bild et al. led to a significantly improved survival time prediction in the independent dataset from van de Vijver et al. Among the 10 genes selected by dwgLASSO, UBE2S, SALL2, XBP1 and KIAA0922 have been confirmed by literature survey to be highly relevant in breast cancer biomarker discovery study. Additionally, we tested dwgLASSO on TCGA RNA-seq data acquired from patients with hepatocellular carcinoma (HCC) on tumors samples and their corresponding non-tumorous liver tissues. Improved sensitivity, specificity and area under curve (AUC) were observed when comparing dwgLASSO with conventional differential gene expression analysis method.ConclusionsThe proposed network-based differential gene expression analysis algorithm dwgLASSO can achieve better performance than conventional differential gene expression analysis methods by integrating information at both gene expression and network topology levels. The incorporation of prior biological knowledge can lead to the identification of biologically meaningful genes in cancer biomarker studies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1515-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.