In this paper, we study two challenging and less-touched problems in single image dehazing, namely, how to make deep learning achieve image dehazing without training on the ground-truth clean image (unsupervised) and an image collection (untrained). An unsupervised model will avoid the intensive labor of collecting hazy-clean image pairs, and an untrained model is a "real" single image dehazing approach which could remove haze based on the observed hazy image only and no extra images are used. Motivated by the layer disentanglement, we propose a novel method, called you only look yourself (YOLY) which could be one of the first unsupervised and untrained neural networks for image dehazing. In brief, YOLY employs three joint subnetworks to separate the observed hazy image into several latent layers, i.e., scene radiance layer, transmission map layer, and atmospheric light layer. After that, three layers are further composed to the hazy image in a selfsupervised manner. Thanks to the unsupervised and untrained characteristics of YOLY, our method bypasses the conventional training paradigm of deep models on hazy-clean pairs or a large scale dataset, thus avoids the labor-intensive data collection and the domain shift issue. Besides, our method also provides an effective learning-based haze transfer solution thanks to its layer disentanglement mechanism. Extensive experiments show the promising performance of our method in image dehazing compared with 14 methods on six databases. The code could be accessed at www.pengxi.me. Keywords Single image dehazing • Unsupervised learning • Untrained neural network Communicated by Vishal Patel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.