Objective
The purpose of this study was to elucidate the expression of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in rats with Alzheimer's disease (AD) and to explore its potential mechanisms.
Methods
An AD rat model was induced by microinjection of Aβ25‐35. On the first day after successful modeling, pcDNA3.1 plasmid and pcDNA3.1‐MEG3 plasmid were continuously infused into the third ventricle through a micro‐osmotic pump to interfere with the expression level of MEG3. The spatial learning ability and memory ability, the histopathological changes of hippocampus tissues, the ultrastructure of hippocampal neurons, astrocyte activation as well as the survival and apoptosis of hippocampal neurons in each group was observed. The expression of apoptosis, PI3/Akt signaling pathway‐related proteins, glial fibrillary acidic protein, inflammatory factors, malondialdehyde, glutathione‐peroxidase, and superoxide dismutase levels were determined. The deposition of amyloid beta (Aβ) in the hippocampus of rats by was observed by Aβ immunohistochemical staining.
Results
Downregulated MEG3 was detected in the tissues of AD rats. In addition, upregulation of MEG3 contributed to an improvement of spatial learning ability and memory ability, inhibited the pathological injury and its apoptosis of hippocampal neurons, decreased Aβ positive expression, inhibited oxidative stress injury and inflammatory injury as well as the activated astrocytes in AD rats via inactivation of the PI3/Akt pathway.
Conclusion
Our study highlights that upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in AD through inhibiting the PI3K/Akt signaling pathway.
Brain ischemia/reperfusion (I/R) injury is a common pathological process after ischemic stroke. Pinoresinol diglucoside (PDG) has antioxidation and antiinflammation activities. However, whether PDG ameliorates brain I/R injury is still unclear. In this study, middle cerebral artery occlusion (MCAO) model was established with male C57BL/6 mice, and the mice were treated with 5 and 10 mg/kg PDG via intravenous injection, respectively. The neurological deficit, infarct volume, and brain water content were then evaluated. HE staining and Nissl staining were used to analyze neuron injury. Besides, enzyme-linked immunosorbent assay and colorimetry assay were used to examine the level of inflammatory markers and oxidative stress markers, and Western blot was used to detect the expressions of p-p65, Nrf2, and HO-1. It was revealed that PDG could significantly alleviate the MCAO-induced neurological dysfunction of the mice and reduce the infarct volume, brain water content, and neuron injury. PDG treatment decreased the levels of TNF-α, IL-1β, IL-6, NO, ROS, and MDA, and significantly increased the activities of SOD, GSH, and GSH-Px in the brain tissue of the mice. Additionally, PDG could repress the activation of p65 and promote Nrf2 and HO-1 expressions. In conclusion, PDG exerts anti-inflammatory and antioxidation effects via regulating the NF-κB pathway and Nrf2/HO-1 pathway, thereby reducing the I/R-induced brain injury of mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.